Properties

Label 16.0.13881687657...0409.2
Degree $16$
Signature $[0, 8]$
Discriminant $11^{12}\cdot 89^{7}$
Root discriminant $43.04$
Ramified primes $11, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4.D_4:C_4$ (as 16T289)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8272, 3696, -15620, -15664, 4819, 15875, 5416, -3454, -1264, 635, 305, -276, 5, 37, -7, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 7*x^14 + 37*x^13 + 5*x^12 - 276*x^11 + 305*x^10 + 635*x^9 - 1264*x^8 - 3454*x^7 + 5416*x^6 + 15875*x^5 + 4819*x^4 - 15664*x^3 - 15620*x^2 + 3696*x + 8272)
 
gp: K = bnfinit(x^16 - 3*x^15 - 7*x^14 + 37*x^13 + 5*x^12 - 276*x^11 + 305*x^10 + 635*x^9 - 1264*x^8 - 3454*x^7 + 5416*x^6 + 15875*x^5 + 4819*x^4 - 15664*x^3 - 15620*x^2 + 3696*x + 8272, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - 7 x^{14} + 37 x^{13} + 5 x^{12} - 276 x^{11} + 305 x^{10} + 635 x^{9} - 1264 x^{8} - 3454 x^{7} + 5416 x^{6} + 15875 x^{5} + 4819 x^{4} - 15664 x^{3} - 15620 x^{2} + 3696 x + 8272 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(138816876576378001590580409=11^{12}\cdot 89^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $43.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{184} a^{14} - \frac{5}{184} a^{13} - \frac{5}{184} a^{12} - \frac{5}{184} a^{11} - \frac{37}{184} a^{10} + \frac{11}{92} a^{9} + \frac{5}{184} a^{8} - \frac{11}{184} a^{7} - \frac{43}{92} a^{6} + \frac{13}{92} a^{5} + \frac{9}{23} a^{4} - \frac{25}{184} a^{3} + \frac{61}{184} a^{2} - \frac{19}{92} a + \frac{17}{46}$, $\frac{1}{57081037793995447248367341776} a^{15} - \frac{13316806137733181458756873}{57081037793995447248367341776} a^{14} + \frac{7788568034724528798401802427}{57081037793995447248367341776} a^{13} + \frac{2340906818541925081925318127}{57081037793995447248367341776} a^{12} + \frac{3530108929821890339541091551}{57081037793995447248367341776} a^{11} + \frac{1204168860970118295234187435}{28540518896997723624183670888} a^{10} + \frac{2165433532611184891142939985}{57081037793995447248367341776} a^{9} - \frac{8281128170265434561236237155}{57081037793995447248367341776} a^{8} + \frac{10311280681478454611201063495}{28540518896997723624183670888} a^{7} - \frac{12723577461598925150906753859}{28540518896997723624183670888} a^{6} + \frac{2806919876260163955407620259}{14270259448498861812091835444} a^{5} + \frac{10238024098433460291972447659}{57081037793995447248367341776} a^{4} + \frac{579019052281558858671488985}{57081037793995447248367341776} a^{3} + \frac{6365429208145695872822545207}{28540518896997723624183670888} a^{2} + \frac{5363225912407745298913112963}{14270259448498861812091835444} a + \frac{412870915124279081930364382}{3567564862124715453022958861}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4459125.06221 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.D_4:C_4$ (as 16T289):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $C_4.D_4:C_4$
Character table for $C_4.D_4:C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-11}) \), 4.0.10769.1, 8.0.10321451129.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ $16$ R $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ $16$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$89$89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.8.7.4$x^{8} - 64881$$8$$1$$7$$C_8$$[\ ]_{8}$