Normalized defining polynomial
\( x^{16} - 3 x^{15} - 7 x^{14} + 37 x^{13} + 5 x^{12} - 276 x^{11} + 305 x^{10} + 635 x^{9} - 1264 x^{8} - 3454 x^{7} + 5416 x^{6} + 15875 x^{5} + 4819 x^{4} - 15664 x^{3} - 15620 x^{2} + 3696 x + 8272 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138816876576378001590580409=11^{12}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{184} a^{14} - \frac{5}{184} a^{13} - \frac{5}{184} a^{12} - \frac{5}{184} a^{11} - \frac{37}{184} a^{10} + \frac{11}{92} a^{9} + \frac{5}{184} a^{8} - \frac{11}{184} a^{7} - \frac{43}{92} a^{6} + \frac{13}{92} a^{5} + \frac{9}{23} a^{4} - \frac{25}{184} a^{3} + \frac{61}{184} a^{2} - \frac{19}{92} a + \frac{17}{46}$, $\frac{1}{57081037793995447248367341776} a^{15} - \frac{13316806137733181458756873}{57081037793995447248367341776} a^{14} + \frac{7788568034724528798401802427}{57081037793995447248367341776} a^{13} + \frac{2340906818541925081925318127}{57081037793995447248367341776} a^{12} + \frac{3530108929821890339541091551}{57081037793995447248367341776} a^{11} + \frac{1204168860970118295234187435}{28540518896997723624183670888} a^{10} + \frac{2165433532611184891142939985}{57081037793995447248367341776} a^{9} - \frac{8281128170265434561236237155}{57081037793995447248367341776} a^{8} + \frac{10311280681478454611201063495}{28540518896997723624183670888} a^{7} - \frac{12723577461598925150906753859}{28540518896997723624183670888} a^{6} + \frac{2806919876260163955407620259}{14270259448498861812091835444} a^{5} + \frac{10238024098433460291972447659}{57081037793995447248367341776} a^{4} + \frac{579019052281558858671488985}{57081037793995447248367341776} a^{3} + \frac{6365429208145695872822545207}{28540518896997723624183670888} a^{2} + \frac{5363225912407745298913112963}{14270259448498861812091835444} a + \frac{412870915124279081930364382}{3567564862124715453022958861}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4459125.06221 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.10769.1, 8.0.10321451129.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |