Normalized defining polynomial
\( x^{16} - 3 x^{15} + 2 x^{14} - 17 x^{13} + 91 x^{12} - 134 x^{11} + 359 x^{10} - 597 x^{9} + 1446 x^{8} - 4703 x^{7} + 4549 x^{6} - 4130 x^{5} + 15976 x^{4} - 21928 x^{3} + 12448 x^{2} + 9120 x + 5184 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138816876576378001590580409=11^{12}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{3}{16} a^{4} - \frac{7}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{5}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{128} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{128} a^{10} - \frac{1}{32} a^{9} + \frac{1}{16} a^{8} - \frac{21}{128} a^{7} + \frac{3}{16} a^{5} + \frac{21}{128} a^{4} + \frac{3}{16} a^{3} + \frac{9}{32} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{512} a^{14} - \frac{1}{512} a^{13} - \frac{1}{64} a^{12} + \frac{11}{512} a^{11} + \frac{1}{512} a^{10} + \frac{5}{128} a^{9} - \frac{29}{512} a^{8} + \frac{97}{512} a^{7} + \frac{7}{32} a^{6} + \frac{5}{512} a^{5} - \frac{17}{512} a^{4} - \frac{3}{128} a^{3} - \frac{13}{128} a^{2} - \frac{15}{32} a + \frac{15}{32}$, $\frac{1}{34439493135970307816448} a^{15} - \frac{2639998730609669715}{11479831045323435938816} a^{14} - \frac{28123892317900417837}{8609873283992576954112} a^{13} - \frac{708338735940600117029}{34439493135970307816448} a^{12} - \frac{141888910778899220759}{34439493135970307816448} a^{11} + \frac{3996629645256611981}{1076234160499072119264} a^{10} - \frac{905887465118565405517}{34439493135970307816448} a^{9} - \frac{976147592281068149645}{11479831045323435938816} a^{8} - \frac{265772536047794457847}{2869957761330858984704} a^{7} + \frac{4441181453149382292229}{34439493135970307816448} a^{6} + \frac{1861721211009676333495}{34439493135970307816448} a^{5} - \frac{859026920105512205869}{4304936641996288477056} a^{4} - \frac{3009588544329072889253}{8609873283992576954112} a^{3} + \frac{57838730266746087427}{1076234160499072119264} a^{2} + \frac{334673962987775445895}{2152468320998144238528} a + \frac{76445477352510212891}{179372360083178686544}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72547314.059 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.10769.1, 8.0.10321451129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.4.1 | $x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |