Normalized defining polynomial
\( x^{16} - 4 x^{15} - 34 x^{14} + 162 x^{13} + 381 x^{12} - 2516 x^{11} - 825 x^{10} + 18420 x^{9} - 13366 x^{8} - 51128 x^{7} + 48569 x^{6} + 37860 x^{5} + 299347 x^{4} - 1154488 x^{3} + 1466315 x^{2} - 814322 x + 168437 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13872985106194361214049869121=17^{12}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{3} a^{4} + \frac{1}{12} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a + \frac{5}{12}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{5}{12} a + \frac{1}{3}$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} + \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{12} a^{3} + \frac{1}{3} a^{2} + \frac{1}{4}$, $\frac{1}{72} a^{12} + \frac{1}{72} a^{10} - \frac{1}{36} a^{9} - \frac{1}{72} a^{8} + \frac{7}{36} a^{7} + \frac{5}{72} a^{6} - \frac{5}{36} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} + \frac{5}{36} a + \frac{23}{72}$, $\frac{1}{72} a^{13} + \frac{1}{72} a^{11} - \frac{1}{36} a^{10} - \frac{1}{72} a^{9} + \frac{1}{36} a^{8} - \frac{7}{72} a^{7} + \frac{7}{36} a^{6} + \frac{1}{12} a^{5} - \frac{1}{3} a^{4} - \frac{1}{12} a^{3} - \frac{1}{36} a^{2} - \frac{25}{72} a + \frac{1}{6}$, $\frac{1}{144} a^{14} - \frac{1}{144} a^{13} - \frac{1}{48} a^{11} + \frac{5}{144} a^{9} - \frac{1}{72} a^{8} - \frac{5}{144} a^{7} + \frac{29}{144} a^{6} - \frac{25}{72} a^{5} - \frac{1}{3} a^{4} - \frac{7}{72} a^{3} + \frac{49}{144} a^{2} + \frac{11}{48} a + \frac{31}{144}$, $\frac{1}{17023895295409133092803312} a^{15} - \frac{7761246168761378894927}{5674631765136377697601104} a^{14} + \frac{15470604198750199756409}{2837315882568188848800552} a^{13} + \frac{3632187259748303280563}{1891543921712125899200368} a^{12} - \frac{41664647401524745236595}{8511947647704566546401656} a^{11} + \frac{31672285684912074766769}{5674631765136377697601104} a^{10} + \frac{2763267200625022416944}{1063993455963070818300207} a^{9} + \frac{165318219617709286928077}{17023895295409133092803312} a^{8} + \frac{929869158624743594339219}{17023895295409133092803312} a^{7} - \frac{522283219696482799564087}{4255973823852283273200828} a^{6} + \frac{1114803912167329452613249}{4255973823852283273200828} a^{5} - \frac{1038647822368447092004189}{8511947647704566546401656} a^{4} + \frac{3477015860963055931869065}{17023895295409133092803312} a^{3} + \frac{5436942284411650929912125}{17023895295409133092803312} a^{2} - \frac{425341035983925590842399}{1891543921712125899200368} a + \frac{4210371383889693029465081}{8511947647704566546401656}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3414476.88793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.10852817.2, 4.2.13583.1, 4.2.230911.1, 8.0.3136464113.1, 8.4.6928449225617.1, 8.0.117783636835489.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |