Normalized defining polynomial
\( x^{16} - 14x^{14} + 105x^{12} - 460x^{10} + 1260x^{8} - 1768x^{6} + 2788x^{4} - 4624x^{2} + 4624 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(138538045941822955454464\)
\(\medspace = 2^{36}\cdot 17^{10}\)
|
| |
| Root discriminant: | \(27.95\) |
| |
| Galois root discriminant: | $2^{3}17^{3/4}\approx 66.97715222874152$ | ||
| Ramified primes: |
\(2\), \(17\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.342102016.2 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{10}-\frac{1}{4}a^{7}+\frac{3}{16}a^{6}+\frac{1}{4}a^{5}+\frac{3}{8}a^{4}-\frac{1}{2}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{16}a^{11}-\frac{1}{4}a^{8}+\frac{3}{16}a^{7}-\frac{1}{4}a^{6}+\frac{3}{8}a^{5}-\frac{3}{8}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a$, $\frac{1}{272}a^{12}+\frac{3}{272}a^{10}-\frac{65}{272}a^{8}-\frac{1}{4}a^{7}+\frac{67}{272}a^{6}+\frac{1}{4}a^{5}+\frac{9}{68}a^{4}-\frac{1}{2}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{272}a^{13}+\frac{3}{272}a^{11}+\frac{3}{272}a^{9}-\frac{1}{272}a^{7}-\frac{25}{68}a^{5}+\frac{1}{8}a^{3}-\frac{1}{4}a$, $\frac{1}{2913959392}a^{14}-\frac{2542047}{1456979696}a^{12}-\frac{68335961}{2913959392}a^{10}-\frac{20614977}{364244924}a^{8}+\frac{11854335}{1456979696}a^{6}-\frac{6310629}{91061231}a^{4}+\frac{9901373}{21426172}a^{2}-\frac{1542078}{5356543}$, $\frac{1}{5827918784}a^{15}+\frac{87953}{91061231}a^{13}-\frac{36196703}{5827918784}a^{11}-\frac{66390279}{2913959392}a^{9}+\frac{203056}{91061231}a^{7}-\frac{1}{4}a^{6}-\frac{9362123}{42852344}a^{5}+\frac{1}{4}a^{4}+\frac{25159289}{85704688}a^{3}-\frac{1}{2}a^{2}-\frac{11524855}{42852344}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2379}{85704688}a^{14}+\frac{3617}{21426172}a^{12}-\frac{171169}{85704688}a^{10}+\frac{553157}{42852344}a^{8}-\frac{367965}{21426172}a^{6}+\frac{258009}{10713086}a^{4}-\frac{1070167}{21426172}a^{2}+\frac{5234923}{10713086}$, $\frac{244115}{1456979696}a^{14}-\frac{826699}{364244924}a^{12}+\frac{27319213}{1456979696}a^{10}-\frac{74318027}{728489848}a^{8}+\frac{291451527}{728489848}a^{6}-\frac{414028553}{364244924}a^{4}+\frac{12351188}{5356543}a^{2}-\frac{10553661}{5356543}$, $\frac{2690979}{5827918784}a^{15}+\frac{618355}{2913959392}a^{14}-\frac{2062415}{364244924}a^{13}-\frac{571599}{182122462}a^{12}+\frac{224397115}{5827918784}a^{11}+\frac{74051311}{2913959392}a^{10}-\frac{424793061}{2913959392}a^{9}-\frac{172566701}{1456979696}a^{8}+\frac{239600673}{728489848}a^{7}+\frac{251391451}{728489848}a^{6}-\frac{153390805}{728489848}a^{5}-\frac{10294243}{21426172}a^{4}+\frac{35856999}{85704688}a^{3}+\frac{32209029}{42852344}a^{2}-\frac{1531021}{42852344}a+\frac{224535}{21426172}$, $\frac{5668007}{5827918784}a^{15}+\frac{1071865}{1456979696}a^{14}-\frac{9411309}{728489848}a^{13}-\frac{7766759}{728489848}a^{12}+\frac{530012095}{5827918784}a^{11}+\frac{115386151}{1456979696}a^{10}-\frac{1042048861}{2913959392}a^{9}-\frac{31439615}{91061231}a^{8}+\frac{583309451}{728489848}a^{7}+\frac{666058893}{728489848}a^{6}-\frac{374338125}{728489848}a^{5}-\frac{27548363}{21426172}a^{4}+\frac{88538595}{85704688}a^{3}+\frac{10940644}{5356543}a^{2}-\frac{152616877}{42852344}a-\frac{54212781}{10713086}$, $\frac{342247}{5827918784}a^{15}-\frac{209203}{1456979696}a^{14}-\frac{900523}{728489848}a^{13}+\frac{456479}{364244924}a^{12}+\frac{56820007}{5827918784}a^{11}-\frac{10989789}{1456979696}a^{10}-\frac{125474589}{2913959392}a^{9}+\frac{22340593}{728489848}a^{8}+\frac{10231036}{91061231}a^{7}-\frac{86584639}{728489848}a^{6}-\frac{148179595}{728489848}a^{5}+\frac{882910}{5356543}a^{4}+\frac{26883711}{85704688}a^{3}-\frac{2843995}{5356543}a^{2}-\frac{45898049}{42852344}a+\frac{670835}{10713086}$, $\frac{5103773}{5827918784}a^{15}-\frac{5024169}{2913959392}a^{14}-\frac{3548897}{364244924}a^{13}+\frac{15381621}{728489848}a^{12}+\frac{341972821}{5827918784}a^{11}-\frac{395560217}{2913959392}a^{10}-\frac{530187283}{2913959392}a^{9}+\frac{695847233}{1456979696}a^{8}+\frac{197631339}{728489848}a^{7}-\frac{320577799}{364244924}a^{6}+\frac{109931413}{728489848}a^{5}+\frac{2046101}{21426172}a^{4}+\frac{143970537}{85704688}a^{3}-\frac{111078165}{42852344}a^{2}-\frac{2242571}{42852344}a+\frac{35657105}{21426172}$, $\frac{1537}{1937473}a^{14}-\frac{49955}{3874946}a^{12}+\frac{204684}{1937473}a^{10}-\frac{1935855}{3874946}a^{8}+\frac{2740924}{1937473}a^{6}-\frac{224516}{113969}a^{4}+\frac{126096}{113969}a^{2}-\frac{904387}{113969}$
|
| |
| Regulator: | \( 475501.195576 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 475501.195576 \cdot 1}{2\cdot\sqrt{138538045941822955454464}}\cr\approx \mathstrut & 1.55158665489 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2:D_4$ (as 16T305):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_4^2:D_4$ |
| Character table for $C_4^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), 4.0.1088.2 x2, 4.0.2312.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.0.342102016.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.490875290811165073997824.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.11a1.10 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ |
| 2.1.4.11a1.12 | $x^{4} + 8 x^{3} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
|
\(17\)
| 17.2.4.6a1.3 | $x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74806 x^{4} + 50880 x^{3} + 13932 x^{2} + 1745 x + 319$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |