Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} + 5 x^{13} + 23 x^{12} - 15 x^{11} + 55 x^{10} + 43 x^{9} + x^{8} - 387 x^{7} + 401 x^{6} + 1367 x^{5} + 5089 x^{4} + 5471 x^{3} + 6651 x^{2} + 3764 x + 6091 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138208899689636344140625=5^{8}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} - \frac{5}{13} a^{10} + \frac{5}{13} a^{9} + \frac{5}{13} a^{8} - \frac{2}{13} a^{7} + \frac{3}{13} a^{6} - \frac{6}{13} a^{5} + \frac{2}{13} a^{4} - \frac{2}{13} a^{3} + \frac{6}{13} a^{2} + \frac{3}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{12} + \frac{6}{13} a^{10} + \frac{4}{13} a^{9} - \frac{3}{13} a^{8} + \frac{6}{13} a^{7} - \frac{4}{13} a^{6} - \frac{2}{13} a^{5} - \frac{5}{13} a^{4} - \frac{4}{13} a^{3} - \frac{6}{13} a^{2} + \frac{5}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{13} - \frac{5}{13} a^{10} + \frac{6}{13} a^{9} + \frac{2}{13} a^{8} - \frac{5}{13} a^{7} + \frac{6}{13} a^{6} + \frac{5}{13} a^{5} - \frac{3}{13} a^{4} + \frac{6}{13} a^{3} - \frac{5}{13} a^{2} - \frac{3}{13} a - \frac{5}{13}$, $\frac{1}{1014} a^{14} - \frac{1}{78} a^{13} + \frac{5}{338} a^{12} - \frac{17}{1014} a^{11} - \frac{5}{26} a^{10} + \frac{67}{1014} a^{9} - \frac{409}{1014} a^{8} - \frac{413}{1014} a^{7} + \frac{37}{78} a^{6} + \frac{11}{78} a^{5} - \frac{379}{1014} a^{4} - \frac{135}{338} a^{3} - \frac{55}{338} a^{2} - \frac{421}{1014} a - \frac{487}{1014}$, $\frac{1}{1622014511051655440868954} a^{15} + \frac{132111500394444636938}{270335751841942573478159} a^{14} + \frac{8463515978601755732272}{811007255525827720434477} a^{13} + \frac{15950487489278020605911}{811007255525827720434477} a^{12} - \frac{7327627530064560682702}{811007255525827720434477} a^{11} - \frac{273903981089437742839093}{811007255525827720434477} a^{10} - \frac{63069615469200395877260}{270335751841942573478159} a^{9} + \frac{21135354047601750448747}{270335751841942573478159} a^{8} - \frac{16447768663696501002074}{811007255525827720434477} a^{7} - \frac{31229841813502687768}{20795057833995582575243} a^{6} - \frac{389330389260046217785972}{811007255525827720434477} a^{5} + \frac{19246540352555835352003}{62385173501986747725729} a^{4} + \frac{45669978272769082418850}{270335751841942573478159} a^{3} - \frac{203289086066541584434232}{811007255525827720434477} a^{2} - \frac{330022747447519851620149}{811007255525827720434477} a - \frac{644536253995271424219973}{1622014511051655440868954}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3793.72993285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |