Normalized defining polynomial
\( x^{16} - 4 x^{15} + 45 x^{14} - 160 x^{13} + 846 x^{12} - 2460 x^{11} + 8219 x^{10} - 18505 x^{9} + 42209 x^{8} - 70521 x^{7} + 109939 x^{6} - 126586 x^{5} + 122135 x^{4} - 81341 x^{3} + 42543 x^{2} - 26360 x + 15151 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13804460977881721884765625=5^{10}\cdot 29^{8}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{205} a^{12} - \frac{3}{205} a^{11} - \frac{9}{205} a^{10} + \frac{7}{41} a^{9} + \frac{21}{205} a^{8} + \frac{9}{41} a^{7} - \frac{3}{205} a^{6} - \frac{67}{205} a^{5} + \frac{14}{205} a^{4} + \frac{7}{205} a^{3} + \frac{48}{205} a^{2} - \frac{89}{205} a - \frac{99}{205}$, $\frac{1}{205} a^{13} - \frac{18}{205} a^{11} + \frac{8}{205} a^{10} - \frac{79}{205} a^{9} - \frac{97}{205} a^{8} - \frac{73}{205} a^{7} - \frac{76}{205} a^{6} + \frac{18}{205} a^{5} + \frac{49}{205} a^{4} + \frac{69}{205} a^{3} + \frac{11}{41} a^{2} + \frac{44}{205} a - \frac{92}{205}$, $\frac{1}{205} a^{14} - \frac{46}{205} a^{11} - \frac{36}{205} a^{10} - \frac{2}{5} a^{9} + \frac{20}{41} a^{8} - \frac{86}{205} a^{7} - \frac{36}{205} a^{6} + \frac{73}{205} a^{5} - \frac{89}{205} a^{4} - \frac{24}{205} a^{3} + \frac{88}{205} a^{2} - \frac{54}{205} a + \frac{63}{205}$, $\frac{1}{8590796793353286979334275} a^{15} - \frac{3953775299539832931729}{1718159358670657395866855} a^{14} + \frac{1230713235707248783583}{1718159358670657395866855} a^{13} + \frac{520371055599572325851}{1718159358670657395866855} a^{12} - \frac{2371137894916359000243704}{8590796793353286979334275} a^{11} + \frac{1775187674219766206528524}{8590796793353286979334275} a^{10} - \frac{30900519439226099621919}{1718159358670657395866855} a^{9} - \frac{591085774463630984803416}{1718159358670657395866855} a^{8} - \frac{3488715813419877192315441}{8590796793353286979334275} a^{7} + \frac{510518044288893042004349}{1718159358670657395866855} a^{6} + \frac{14471016076588632041489}{209531629106177731203275} a^{5} + \frac{472871175652189585161897}{1718159358670657395866855} a^{4} + \frac{210546371742159994203573}{1718159358670657395866855} a^{3} - \frac{2033118558268506396785901}{8590796793353286979334275} a^{2} - \frac{2267807022987775710679276}{8590796793353286979334275} a + \frac{3133228124841919342329556}{8590796793353286979334275}$
Class group and class number
$C_{2}\times C_{52}$, which has order $104$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3793.72993285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $D_4.D_4$ |
| Character table for $D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |