Normalized defining polynomial
\( x^{16} + 234 x^{14} + 46558 x^{12} + 3312588 x^{10} + 517543324 x^{8} + 51447741360 x^{6} + 2284011012880 x^{4} + 178926406536000 x^{2} + 13594580577640000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13742275226577042645713355852595855360000000000=2^{30}\cdot 5^{10}\cdot 41^{6}\cdot 359^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $764.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 359$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6560} a^{12} - \frac{1}{16} a^{11} - \frac{11}{410} a^{10} - \frac{91}{3280} a^{8} + \frac{1}{8} a^{7} - \frac{129}{820} a^{6} + \frac{81}{1640} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6560} a^{13} - \frac{11}{410} a^{11} - \frac{91}{3280} a^{9} - \frac{129}{820} a^{7} + \frac{81}{1640} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{1274356527064955054852781209867429220001374400} a^{14} - \frac{22831069307955203519420937762705225500539}{318589131766238763713195302466857305000343600} a^{12} - \frac{19902363013899901309095301354425074448798351}{637178263532477527426390604933714610000687200} a^{10} - \frac{1}{8} a^{9} - \frac{6694568205555408524757453236467148557324877}{79647282941559690928298825616714326250085900} a^{8} - \frac{1}{4} a^{7} - \frac{23970079891509404334354241229291888650639299}{318589131766238763713195302466857305000343600} a^{6} - \frac{1}{4} a^{5} + \frac{617741783947552797974754178907685635149107}{6371782635324775274263906049337146100006872} a^{4} - \frac{1}{2} a^{3} - \frac{33404166537892774465255630428814645885069}{388523331422242394772189393252265006097980} a^{2} - \frac{1}{2} a - \frac{1559923326005984585618919962670952468568}{19426166571112119738609469662613250304899}$, $\frac{1}{90600377291682979624758480115524880395997712968000} a^{15} - \frac{1206582036801081712168553581682671681662777429}{22650094322920744906189620028881220098999428242000} a^{13} - \frac{446015159062560078677779832361067479934466391871}{45300188645841489812379240057762440197998856484000} a^{11} + \frac{4303228791765519298499866770656329318487290887}{34527582809330403820411006141587225760669860125} a^{9} + \frac{4697058372922496012616052001875915671473342017181}{22650094322920744906189620028881220098999428242000} a^{7} + \frac{162545631938062781592404073894033475926325438739}{2265009432292074490618962002888122009899942824200} a^{5} + \frac{8051335592896591254089615540736258906722554471}{27622066247464323056328804913269780608535888100} a^{3} + \frac{127520815854743197615210878869265886110985282}{276220662474643230563288049132697806085358881} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{144}$, which has order $6912$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14585549456700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{359}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{1795}) \), 4.0.1025.1, 4.0.2113648400.1, \(\Q(\sqrt{5}, \sqrt{359})\), 8.0.4467509558822560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ |
| 2.8.18.19 | $x^{8} + 16 x^{5} + 36$ | $4$ | $2$ | $18$ | $C_2^3: C_4$ | $[2, 2, 3, 7/2]^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 359 | Data not computed | ||||||