Normalized defining polynomial
\( x^{16} - 6 x^{14} - 9166 x^{12} + 1705860 x^{10} + 581558100 x^{8} + 71673084000 x^{6} + 6640477030400 x^{4} + 408443341848000 x^{2} + 13594580577640000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13742275226577042645713355852595855360000000000=2^{30}\cdot 5^{10}\cdot 41^{6}\cdot 359^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $764.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 359$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} + \frac{1}{3}$, $\frac{1}{6} a^{5} + \frac{1}{3} a$, $\frac{1}{6} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{180} a^{8} - \frac{1}{30} a^{6} + \frac{1}{45} a^{4} + \frac{1}{3} a^{2} + \frac{2}{9}$, $\frac{1}{180} a^{9} - \frac{1}{30} a^{7} + \frac{1}{45} a^{5} + \frac{1}{3} a^{3} + \frac{2}{9} a$, $\frac{1}{720} a^{10} - \frac{1}{360} a^{9} + \frac{1}{60} a^{7} - \frac{1}{360} a^{6} + \frac{13}{180} a^{5} + \frac{1}{30} a^{4} - \frac{1}{6} a^{3} - \frac{13}{36} a^{2} + \frac{1}{18} a + \frac{1}{6}$, $\frac{1}{720} a^{11} - \frac{1}{360} a^{7} + \frac{1}{30} a^{5} - \frac{13}{36} a^{3} + \frac{1}{6} a$, $\frac{1}{1771200} a^{12} - \frac{1}{295200} a^{10} - \frac{571}{295200} a^{8} - \frac{1663}{29520} a^{6} + \frac{707}{9840} a^{4} + \frac{17}{36} a^{2} - \frac{11}{108}$, $\frac{1}{3542400} a^{13} - \frac{1}{590400} a^{11} - \frac{571}{590400} a^{9} - \frac{1663}{59040} a^{7} - \frac{311}{6560} a^{5} + \frac{17}{72} a^{3} + \frac{61}{216} a$, $\frac{1}{84306583326248976957479252526915936000} a^{14} - \frac{852549832380979612260218250919}{21076645831562244239369813131728984000} a^{12} - \frac{2637712687242442418088377108453341}{14051097221041496159579875421152656000} a^{10} - \frac{1}{360} a^{9} + \frac{1324980077354185996745971823713219}{702554861052074807978993771057632800} a^{8} + \frac{1}{60} a^{7} + \frac{290185792410030090511519282132179}{6244932098240664959813277964956736} a^{6} + \frac{13}{180} a^{5} - \frac{8966337161475913633051504875064493}{140510972210414961595798754211526560} a^{4} - \frac{1}{6} a^{3} + \frac{127511564963304249250817826466231}{5140645324771279082773125154080240} a^{2} + \frac{1}{18} a - \frac{124505034416793479425720368560767}{514064532477127908277312515408024}$, $\frac{1}{11987553083159342033583974916802176939840000} a^{15} - \frac{42889048700220766324636607552041981}{332987585643315056488443747688949359440000} a^{13} - \frac{1}{3542400} a^{12} - \frac{1266277428376568621610742128900527802701}{1997925513859890338930662486133696156640000} a^{11} + \frac{1}{590400} a^{10} + \frac{136523199257180842974222578173160290981}{99896275692994516946533124306684807832000} a^{9} + \frac{571}{590400} a^{8} - \frac{1421196517560152432085645824744018449817}{39958510277197806778613249722673923132800} a^{7} + \frac{1663}{59040} a^{6} + \frac{35045970863631568504952689115481646123}{3995851027719780677861324972267392313280} a^{5} + \frac{311}{6560} a^{4} + \frac{143824959612312343613212336014095807611}{730948358729228172779510665658669325600} a^{3} - \frac{17}{72} a^{2} + \frac{5784637831627047102280889380020236627}{24364945290974272425983688855288977520} a - \frac{61}{216}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{144}$, which has order $6912$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8590327656330 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{359}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{1795}) \), 4.0.2113648400.1, 4.0.1025.1, \(\Q(\sqrt{5}, \sqrt{359})\), 8.0.4467509558822560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ |
| 2.8.18.20 | $x^{8} + 4 x^{7} + 2 x^{6} + 10 x^{4} + 20 x^{2} + 4$ | $4$ | $2$ | $18$ | $C_2^3: C_4$ | $[2, 2, 3, 7/2]^{2}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 359 | Data not computed | ||||||