Normalized defining polynomial
\( x^{16} - 4 x^{15} + 30 x^{14} - 96 x^{13} + 449 x^{12} - 1142 x^{11} + 3458 x^{10} - 5841 x^{9} + 11802 x^{8} - 9944 x^{7} + 12789 x^{6} + 5932 x^{5} + 8336 x^{4} + 8839 x^{3} + 11450 x^{2} + 4329 x + 611 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(137350965859713069141239809=13^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{26} a^{12} - \frac{11}{26} a^{9} - \frac{6}{13} a^{8} - \frac{1}{13} a^{7} - \frac{11}{26} a^{6} + \frac{2}{13} a^{5} + \frac{2}{13} a^{4} - \frac{9}{26} a^{3} + \frac{5}{13} a^{2} - \frac{1}{2}$, $\frac{1}{26} a^{13} - \frac{11}{26} a^{10} - \frac{6}{13} a^{9} - \frac{1}{13} a^{8} - \frac{11}{26} a^{7} + \frac{2}{13} a^{6} + \frac{2}{13} a^{5} - \frac{9}{26} a^{4} + \frac{5}{13} a^{3} - \frac{1}{2} a$, $\frac{1}{26} a^{14} - \frac{11}{26} a^{11} - \frac{6}{13} a^{10} - \frac{1}{13} a^{9} - \frac{11}{26} a^{8} + \frac{2}{13} a^{7} + \frac{2}{13} a^{6} - \frac{9}{26} a^{5} + \frac{5}{13} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{13789331976934792343394920786} a^{15} + \frac{75801755750823660727171135}{6894665988467396171697460393} a^{14} - \frac{250232592694797289190247557}{13789331976934792343394920786} a^{13} - \frac{112350279254001513810770101}{6894665988467396171697460393} a^{12} - \frac{52785231489051391180498473}{530358922189799705515189261} a^{11} + \frac{6119635388773005335090217079}{13789331976934792343394920786} a^{10} - \frac{1531598292108541050509242247}{6894665988467396171697460393} a^{9} + \frac{253534599939471212088717530}{6894665988467396171697460393} a^{8} + \frac{4189979640245245133567448007}{13789331976934792343394920786} a^{7} - \frac{2298631978553359661010485198}{6894665988467396171697460393} a^{6} - \frac{2724266881360326175827582869}{6894665988467396171697460393} a^{5} + \frac{5312075846014877873883860743}{13789331976934792343394920786} a^{4} - \frac{147906852821123482453592074}{530358922189799705515189261} a^{3} + \frac{3141497784895118419626655494}{6894665988467396171697460393} a^{2} - \frac{321837724492759451655504661}{1060717844379599411030378522} a - \frac{247330575703064393768315015}{1060717844379599411030378522}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 428556.954665 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.69347235737.1, 8.4.53030239093.1, 8.4.901514064581.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||