Properties

Label 16.0.13735096585...809.12
Degree $16$
Signature $[0, 8]$
Discriminant $13^{8}\cdot 17^{14}$
Root discriminant $43.01$
Ramified primes $13, 17$
Class number $8$ (GRH)
Class group $[2, 2, 2]$ (GRH)
Galois group $C_8: C_2$ (as 16T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![125969, -142546, -120127, 131958, 113868, -93236, -33867, 23931, 13194, -8941, -11, 585, 25, -27, 6, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 6*x^14 - 27*x^13 + 25*x^12 + 585*x^11 - 11*x^10 - 8941*x^9 + 13194*x^8 + 23931*x^7 - 33867*x^6 - 93236*x^5 + 113868*x^4 + 131958*x^3 - 120127*x^2 - 142546*x + 125969)
 
gp: K = bnfinit(x^16 - 5*x^15 + 6*x^14 - 27*x^13 + 25*x^12 + 585*x^11 - 11*x^10 - 8941*x^9 + 13194*x^8 + 23931*x^7 - 33867*x^6 - 93236*x^5 + 113868*x^4 + 131958*x^3 - 120127*x^2 - 142546*x + 125969, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 6 x^{14} - 27 x^{13} + 25 x^{12} + 585 x^{11} - 11 x^{10} - 8941 x^{9} + 13194 x^{8} + 23931 x^{7} - 33867 x^{6} - 93236 x^{5} + 113868 x^{4} + 131958 x^{3} - 120127 x^{2} - 142546 x + 125969 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(137350965859713069141239809=13^{8}\cdot 17^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $43.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{5252} a^{14} - \frac{209}{2626} a^{13} + \frac{1}{13} a^{12} - \frac{93}{404} a^{11} - \frac{39}{404} a^{10} - \frac{27}{202} a^{9} + \frac{254}{1313} a^{8} - \frac{535}{2626} a^{7} + \frac{209}{2626} a^{6} - \frac{19}{202} a^{5} + \frac{143}{404} a^{4} + \frac{23}{101} a^{3} - \frac{120}{1313} a^{2} - \frac{2303}{5252} a + \frac{1431}{5252}$, $\frac{1}{42464165895142678718239646123348} a^{15} + \frac{3663184009891254977595702607}{42464165895142678718239646123348} a^{14} - \frac{1989902342717010630196089195709}{21232082947571339359119823061674} a^{13} + \frac{2268125060882565489206027053893}{21232082947571339359119823061674} a^{12} + \frac{188331429449536494269971730076}{816618574906589975350762425449} a^{11} - \frac{73754599246616490400142968055}{816618574906589975350762425449} a^{10} - \frac{512486606296883135211814155855}{42464165895142678718239646123348} a^{9} + \frac{2941400188130381917346385199307}{21232082947571339359119823061674} a^{8} - \frac{13532425258214685745730129608441}{42464165895142678718239646123348} a^{7} + \frac{1794678499476608204530733408856}{10616041473785669679559911530837} a^{6} - \frac{469305335666988109334181464649}{1633237149813179950701524850898} a^{5} - \frac{714119805684934326889250959287}{3266474299626359901403049701796} a^{4} - \frac{136088272295224474429749228423}{42464165895142678718239646123348} a^{3} + \frac{3119781496998343145443075896973}{10616041473785669679559911530837} a^{2} - \frac{3400102001733131106728209697199}{42464165895142678718239646123348} a - \frac{5081884056769950787965895773403}{21232082947571339359119823061674}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 534329.701793 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$OD_{16}$ (as 16T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 10 conjugacy class representatives for $C_8: C_2$
Character table for $C_8: C_2$

Intermediate fields

\(\Q(\sqrt{221}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{17})\), 4.4.4913.1, 4.4.830297.1, 8.8.689393108209.1, 8.0.69347235737.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$