Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} + 4 x^{13} - 76 x^{12} + 559 x^{11} - 709 x^{10} + 1501 x^{9} + 951 x^{8} + 34 x^{7} + 17731 x^{6} - 55794 x^{5} + 100861 x^{4} - 114223 x^{3} + 61982 x^{2} - 22763 x + 10183 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(137350965859713069141239809=13^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{5}{16} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{7}{16} a^{5} - \frac{3}{16} a^{4} + \frac{7}{16} a^{3} + \frac{1}{16} a^{2} + \frac{7}{16}$, $\frac{1}{32} a^{14} + \frac{3}{32} a^{12} - \frac{1}{16} a^{11} + \frac{13}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{4} a^{8} - \frac{5}{16} a^{7} - \frac{13}{32} a^{6} - \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{32} a^{2} - \frac{1}{32} a + \frac{15}{32}$, $\frac{1}{98416827918936126484119268205889344} a^{15} - \frac{659299707180507507390079132349833}{98416827918936126484119268205889344} a^{14} + \frac{1590286367858334776398019670958971}{98416827918936126484119268205889344} a^{13} + \frac{12302037545427240067731184479839083}{98416827918936126484119268205889344} a^{12} - \frac{14814261391868059424216703392830497}{98416827918936126484119268205889344} a^{11} + \frac{17967330664104158068792711642160429}{49208413959468063242059634102944672} a^{10} - \frac{15143837410971317934823688453028615}{98416827918936126484119268205889344} a^{9} - \frac{18101139790631453438498500139889065}{49208413959468063242059634102944672} a^{8} - \frac{40323621156308182765999599655250483}{98416827918936126484119268205889344} a^{7} + \frac{5687236466887327122807505718990083}{98416827918936126484119268205889344} a^{6} + \frac{16531567114443964701680487719976407}{49208413959468063242059634102944672} a^{5} - \frac{10739135531947859392256510599372119}{24604206979734031621029817051472336} a^{4} - \frac{26485636777032704055060244795309191}{98416827918936126484119268205889344} a^{3} + \frac{12668739955272766893902442650368791}{49208413959468063242059634102944672} a^{2} + \frac{2647889080307118185360496586811871}{12302103489867015810514908525736168} a - \frac{49625354609250726059003897515993}{164301883003232264581167392664256}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 374046.195998 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.63869.1, 4.4.4913.1, 4.0.3757.1, 8.0.11719682839553.1 x2, 8.4.901514064581.1 x2, 8.0.4079249161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |