Properties

Label 16.0.13734459162...5625.2
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 5^{10}\cdot 11^{8}$
Root discriminant $15.71$
Ramified primes $3, 5, 11$
Class number $2$
Class group $[2]$
Galois group $C_2\times C_4\wr C_2$ (as 16T111)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 75, 45, -10, -66, -128, -6, -24, 108, 41, 25, 9, -14, -2, 2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 2*x^14 - 2*x^13 - 14*x^12 + 9*x^11 + 25*x^10 + 41*x^9 + 108*x^8 - 24*x^7 - 6*x^6 - 128*x^5 - 66*x^4 - 10*x^3 + 45*x^2 + 75*x + 25)
 
gp: K = bnfinit(x^16 + 2*x^14 - 2*x^13 - 14*x^12 + 9*x^11 + 25*x^10 + 41*x^9 + 108*x^8 - 24*x^7 - 6*x^6 - 128*x^5 - 66*x^4 - 10*x^3 + 45*x^2 + 75*x + 25, 1)
 

Normalized defining polynomial

\( x^{16} + 2 x^{14} - 2 x^{13} - 14 x^{12} + 9 x^{11} + 25 x^{10} + 41 x^{9} + 108 x^{8} - 24 x^{7} - 6 x^{6} - 128 x^{5} - 66 x^{4} - 10 x^{3} + 45 x^{2} + 75 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(13734459162509765625=3^{8}\cdot 5^{10}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{45} a^{14} + \frac{2}{45} a^{12} - \frac{22}{45} a^{11} + \frac{16}{45} a^{10} + \frac{14}{45} a^{9} - \frac{1}{3} a^{8} + \frac{2}{15} a^{7} - \frac{7}{45} a^{6} + \frac{7}{15} a^{5} + \frac{1}{5} a^{4} + \frac{4}{15} a^{3} - \frac{7}{15} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{197864866294965} a^{15} - \frac{289517740028}{197864866294965} a^{14} - \frac{1101768365402}{21984985143885} a^{13} + \frac{2685150946522}{197864866294965} a^{12} - \frac{19898440353433}{197864866294965} a^{11} + \frac{53889230984651}{197864866294965} a^{10} - \frac{2576049532273}{21984985143885} a^{9} - \frac{13612064683489}{197864866294965} a^{8} - \frac{13031663161169}{39572973258993} a^{7} + \frac{70826222723582}{197864866294965} a^{6} + \frac{81190795489046}{197864866294965} a^{5} - \frac{2934795011161}{13190991086331} a^{4} - \frac{7005077088368}{21984985143885} a^{3} + \frac{7957214132003}{197864866294965} a^{2} + \frac{16710860783068}{39572973258993} a + \frac{7909541653726}{39572973258993}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1680.30496558 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4\wr C_2$ (as 16T111):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $C_2\times C_4\wr C_2$
Character table for $C_2\times C_4\wr C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{165}) \), 4.0.5445.1, 4.0.605.1, \(\Q(\sqrt{-11}, \sqrt{-15})\), 8.0.411778125.2, 8.0.16471125.1, 8.0.741200625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$