Properties

Label 16.0.13730680642...0625.2
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 29^{4}\cdot 89^{6}$
Root discriminant $27.93$
Ramified primes $5, 29, 89$
Class number $5$
Class group $[5]$
Galois group $C_4.C_2^2:D_4$ (as 16T211)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1621, 1111, 240, 1499, 797, -1517, 1535, -875, 32, -7, 75, -86, 44, 6, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 5*x^14 + 6*x^13 + 44*x^12 - 86*x^11 + 75*x^10 - 7*x^9 + 32*x^8 - 875*x^7 + 1535*x^6 - 1517*x^5 + 797*x^4 + 1499*x^3 + 240*x^2 + 1111*x + 1621)
 
gp: K = bnfinit(x^16 - 2*x^15 - 5*x^14 + 6*x^13 + 44*x^12 - 86*x^11 + 75*x^10 - 7*x^9 + 32*x^8 - 875*x^7 + 1535*x^6 - 1517*x^5 + 797*x^4 + 1499*x^3 + 240*x^2 + 1111*x + 1621, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 5 x^{14} + 6 x^{13} + 44 x^{12} - 86 x^{11} + 75 x^{10} - 7 x^{9} + 32 x^{8} - 875 x^{7} + 1535 x^{6} - 1517 x^{5} + 797 x^{4} + 1499 x^{3} + 240 x^{2} + 1111 x + 1621 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(137306806426635562890625=5^{8}\cdot 29^{4}\cdot 89^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{2237337214256204673706124} a^{15} - \frac{15775066461479678529539}{1118668607128102336853062} a^{14} - \frac{16126761352370385764317}{2237337214256204673706124} a^{13} - \frac{134616266964920132451779}{1118668607128102336853062} a^{12} - \frac{364784673868099613416421}{2237337214256204673706124} a^{11} - \frac{258438031989665579802739}{2237337214256204673706124} a^{10} - \frac{115780804476977728033427}{1118668607128102336853062} a^{9} - \frac{87434323076134580015679}{559334303564051168426531} a^{8} + \frac{137989442562903582424547}{1118668607128102336853062} a^{7} + \frac{379451681879269808737601}{1118668607128102336853062} a^{6} + \frac{780727787899554212030721}{2237337214256204673706124} a^{5} - \frac{288348807564687738603773}{1118668607128102336853062} a^{4} - \frac{187046754860455048134737}{2237337214256204673706124} a^{3} - \frac{434180974611541494792433}{1118668607128102336853062} a^{2} - \frac{808080209083192479250823}{2237337214256204673706124} a + \frac{597724337053010856990279}{2237337214256204673706124}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}$, which has order $5$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13345.9350553 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.C_2^2:D_4$ (as 16T211):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $C_4.C_2^2:D_4$
Character table for $C_4.C_2^2:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 4.4.64525.2, 4.4.725.1, 8.0.370549330625.1, 8.0.440605625.1, 8.8.4163475625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.8.6.2$x^{8} + 979 x^{4} + 285156$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$