Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 22 x^{13} + 56 x^{12} + 44 x^{11} + 140 x^{10} - 2526 x^{9} + 13029 x^{8} - 38012 x^{7} + 83260 x^{6} - 157598 x^{5} + 277076 x^{4} - 394094 x^{3} + 419722 x^{2} - 278608 x + 91181 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1372437234816400000000000000=2^{16}\cdot 5^{14}\cdot 1361^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{3}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{16} a^{2} - \frac{1}{8} a - \frac{7}{16}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{3}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{7}{16} a - \frac{1}{8}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{3}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{3}{32} a^{8} + \frac{1}{32} a^{7} + \frac{5}{32} a^{6} - \frac{1}{16} a^{5} - \frac{7}{32} a^{4} + \frac{13}{32} a^{3} - \frac{3}{8} a^{2} - \frac{13}{32} a - \frac{3}{32}$, $\frac{1}{93754163170324827415525783208288} a^{15} + \frac{32881359608556611550741464103}{2130776435689200623080131436552} a^{14} - \frac{2167312446143444626259252114825}{93754163170324827415525783208288} a^{13} + \frac{2839278772388033452618091176015}{93754163170324827415525783208288} a^{12} + \frac{271636062907207913642000795671}{4261552871378401246160262873104} a^{11} + \frac{191351872593411340587888325711}{8523105742756802492320525746208} a^{10} + \frac{1872662101174269058249744027855}{93754163170324827415525783208288} a^{9} - \frac{2826214633692109354093312852649}{46877081585162413707762891604144} a^{8} + \frac{118298208650148239776374128993}{46877081585162413707762891604144} a^{7} - \frac{20404747411729230705837089284687}{93754163170324827415525783208288} a^{6} + \frac{22156064206039389480702285203675}{93754163170324827415525783208288} a^{5} + \frac{23725841348387365933302599819}{46877081585162413707762891604144} a^{4} + \frac{1337142425512740296026895110445}{93754163170324827415525783208288} a^{3} + \frac{14157837441612153368601903582393}{93754163170324827415525783208288} a^{2} - \frac{1844637950417289713964447993529}{23438540792581206853881445802072} a + \frac{2051395968660829728263109561763}{93754163170324827415525783208288}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 906591.467306 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.0.5444000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 1361 | Data not computed | ||||||