Normalized defining polynomial
\( x^{16} - 4 x^{14} + 56 x^{12} - 294 x^{10} + 1544 x^{8} - 12936 x^{6} + 63833 x^{4} - 109540 x^{2} + 59536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(137011437068313600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(131,·)$, $\chi_{780}(389,·)$, $\chi_{780}(391,·)$, $\chi_{780}(521,·)$, $\chi_{780}(779,·)$, $\chi_{780}(79,·)$, $\chi_{780}(209,·)$, $\chi_{780}(259,·)$, $\chi_{780}(469,·)$, $\chi_{780}(599,·)$, $\chi_{780}(649,·)$, $\chi_{780}(181,·)$, $\chi_{780}(311,·)$, $\chi_{780}(571,·)$, $\chi_{780}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{12} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{12} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{9} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{24} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{10} + \frac{1}{6} a^{6} - \frac{7}{24} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{11} + \frac{1}{6} a^{7} - \frac{7}{24} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{120} a^{12} + \frac{1}{60} a^{10} + \frac{1}{30} a^{8} - \frac{23}{120} a^{6} - \frac{5}{12} a^{4} + \frac{7}{15} a^{2} - \frac{7}{15}$, $\frac{1}{7320} a^{13} + \frac{11}{610} a^{11} + \frac{37}{3660} a^{9} - \frac{261}{2440} a^{7} - \frac{25}{183} a^{5} - \frac{199}{1220} a^{3} - \frac{157}{915} a$, $\frac{1}{4092313856400} a^{14} - \frac{38331659}{14667791600} a^{12} - \frac{70318949857}{4092313856400} a^{10} + \frac{3126654101}{163692554256} a^{8} - \frac{654380324141}{4092313856400} a^{6} - \frac{44649111929}{4092313856400} a^{4} - \frac{9003093947}{341026154700} a^{2} - \frac{1028010832}{4192944525}$, $\frac{1}{4092313856400} a^{15} - \frac{778567}{44003374800} a^{13} - \frac{32302919497}{4092313856400} a^{11} + \frac{2327659879}{818462771280} a^{9} + \frac{577227247669}{4092313856400} a^{7} - \frac{1800095219729}{4092313856400} a^{5} - \frac{227746590689}{682052309400} a^{3} - \frac{2703811739}{511539232050} a$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3662947}{15800439600} a^{15} + \frac{99469}{169897200} a^{13} - \frac{192237371}{15800439600} a^{11} + \frac{31812145}{632017584} a^{9} - \frac{4525875223}{15800439600} a^{7} + \frac{40754362613}{15800439600} a^{5} - \frac{4834022097}{438901100} a^{3} + \frac{18885779213}{1975054950} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 115751.484499 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |