Properties

Label 16.0.13685690504...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 5^{8}\cdot 13^{8}$
Root discriminant $32.25$
Ramified primes $2, 5, 13$
Class number $48$ (GRH)
Class group $[2, 24]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29124, 36264, 43108, 32952, 21946, 25200, 8258, 7896, 5861, 468, 2102, -96, 344, -12, 28, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 28*x^14 - 12*x^13 + 344*x^12 - 96*x^11 + 2102*x^10 + 468*x^9 + 5861*x^8 + 7896*x^7 + 8258*x^6 + 25200*x^5 + 21946*x^4 + 32952*x^3 + 43108*x^2 + 36264*x + 29124)
 
gp: K = bnfinit(x^16 + 28*x^14 - 12*x^13 + 344*x^12 - 96*x^11 + 2102*x^10 + 468*x^9 + 5861*x^8 + 7896*x^7 + 8258*x^6 + 25200*x^5 + 21946*x^4 + 32952*x^3 + 43108*x^2 + 36264*x + 29124, 1)
 

Normalized defining polynomial

\( x^{16} + 28 x^{14} - 12 x^{13} + 344 x^{12} - 96 x^{11} + 2102 x^{10} + 468 x^{9} + 5861 x^{8} + 7896 x^{7} + 8258 x^{6} + 25200 x^{5} + 21946 x^{4} + 32952 x^{3} + 43108 x^{2} + 36264 x + 29124 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1368569050405273600000000=2^{32}\cdot 5^{8}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(520=2^{3}\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{520}(1,·)$, $\chi_{520}(259,·)$, $\chi_{520}(261,·)$, $\chi_{520}(129,·)$, $\chi_{520}(79,·)$, $\chi_{520}(209,·)$, $\chi_{520}(339,·)$, $\chi_{520}(469,·)$, $\chi_{520}(389,·)$, $\chi_{520}(391,·)$, $\chi_{520}(519,·)$, $\chi_{520}(51,·)$, $\chi_{520}(131,·)$, $\chi_{520}(311,·)$, $\chi_{520}(441,·)$, $\chi_{520}(181,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{4}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{18} a^{10} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{18} a^{5} + \frac{1}{18} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{11427570} a^{14} + \frac{81394}{5713785} a^{13} + \frac{8113}{1632510} a^{12} - \frac{302677}{11427570} a^{11} + \frac{29}{6790} a^{10} - \frac{46198}{1904595} a^{9} + \frac{16351}{173145} a^{8} - \frac{177159}{1269730} a^{7} + \frac{1318081}{5713785} a^{6} - \frac{48233}{336105} a^{5} - \frac{1077191}{2285514} a^{4} + \frac{1132046}{5713785} a^{3} + \frac{4699}{57715} a^{2} - \frac{675659}{1904595} a - \frac{35822}{634865}$, $\frac{1}{24485764507129101364650} a^{15} - \frac{785890201399921}{24485764507129101364650} a^{14} + \frac{422438319723550886909}{24485764507129101364650} a^{13} - \frac{468440208187173182531}{24485764507129101364650} a^{12} - \frac{36628324736213549714}{2448576450712910136465} a^{11} + \frac{1125917638953689384639}{24485764507129101364650} a^{10} - \frac{20993514583636153049}{388662928684588910550} a^{9} - \frac{2743249327514872934}{18137603338614149159} a^{8} + \frac{281518472612702555201}{24485764507129101364650} a^{7} + \frac{173308275570751549381}{2448576450712910136465} a^{6} + \frac{3440786500189794335264}{12242882253564550682325} a^{5} - \frac{5774978777132783892643}{24485764507129101364650} a^{4} + \frac{110878282064043409441}{1748983179080650097475} a^{3} - \frac{4540507855549664585836}{12242882253564550682325} a^{2} + \frac{60268847426180399024}{163238430047527342431} a + \frac{92038319214794884828}{1360320250396061186925}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{24}$, which has order $48$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{5601851706033731}{126215280964582996725} a^{15} + \frac{5393198377799101}{36061508847023713350} a^{14} - \frac{251566633083475643}{252430561929165993450} a^{13} + \frac{561146159444189701}{126215280964582996725} a^{12} - \frac{566636135377062911}{50486112385833198690} a^{11} + \frac{11274612429068231167}{252430561929165993450} a^{10} - \frac{639113086984164322}{14023920107175888525} a^{9} + \frac{511000774219000267}{2804784021435177705} a^{8} + \frac{22676278787065879183}{252430561929165993450} a^{7} + \frac{2668908851314878899}{25243056192916599345} a^{6} + \frac{234965097930513743729}{252430561929165993450} a^{5} + \frac{174568650662256349}{7424428292034293925} a^{4} + \frac{165756968597374182536}{126215280964582996725} a^{3} + \frac{30176740352863900366}{18030754423511856675} a^{2} + \frac{1132044330354554671}{764941096755048465} a + \frac{24582193446877811279}{14023920107175888525} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 57386.4139318 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{130}) \), \(\Q(\sqrt{-130}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{-65}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{26})\), \(\Q(i, \sqrt{130})\), \(\Q(i, \sqrt{65})\), \(\Q(\sqrt{2}, \sqrt{-13})\), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\sqrt{2}, \sqrt{65})\), \(\Q(\sqrt{2}, \sqrt{-65})\), \(\Q(\sqrt{-2}, \sqrt{-13})\), \(\Q(\sqrt{-2}, \sqrt{13})\), \(\Q(\sqrt{-2}, \sqrt{-65})\), \(\Q(\sqrt{-2}, \sqrt{65})\), \(\Q(\sqrt{-10}, \sqrt{-13})\), \(\Q(\sqrt{-10}, \sqrt{13})\), \(\Q(\sqrt{-10}, \sqrt{-26})\), \(\Q(\sqrt{-10}, \sqrt{26})\), \(\Q(\sqrt{10}, \sqrt{-13})\), \(\Q(\sqrt{10}, \sqrt{13})\), \(\Q(\sqrt{10}, \sqrt{-26})\), \(\Q(\sqrt{10}, \sqrt{26})\), \(\Q(\sqrt{-5}, \sqrt{-13})\), \(\Q(\sqrt{-5}, \sqrt{13})\), \(\Q(\sqrt{-5}, \sqrt{-26})\), \(\Q(\sqrt{-5}, \sqrt{26})\), \(\Q(\sqrt{5}, \sqrt{-13})\), \(\Q(\sqrt{5}, \sqrt{13})\), \(\Q(\sqrt{5}, \sqrt{-26})\), \(\Q(\sqrt{5}, \sqrt{26})\), 8.0.40960000.1, 8.0.1871773696.1, 8.0.1169858560000.10, 8.0.1169858560000.7, 8.0.1169858560000.1, 8.0.4569760000.1, 8.0.1169858560000.9, 8.0.1169858560000.4, 8.0.1169858560000.5, 8.0.1169858560000.8, 8.8.73116160000.2, 8.0.1169858560000.6, 8.0.73116160000.1, 8.0.1169858560000.3, 8.0.1169858560000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$