Normalized defining polynomial
\( x^{16} - 5 x^{15} + 92 x^{14} - 995 x^{13} + 6157 x^{12} - 49434 x^{11} + 287286 x^{10} - 599430 x^{9} + 8227470 x^{8} + 1047639 x^{7} + 107694699 x^{6} + 24673950 x^{5} + 696973786 x^{4} + 190246216 x^{3} + 1566061688 x^{2} + 738777220 x + 87593557 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136708075730434417658369530269167641=7^{12}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $157.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{11} - \frac{2}{15} a^{10} + \frac{1}{15} a^{9} - \frac{1}{15} a^{8} - \frac{1}{15} a^{7} + \frac{7}{15} a^{6} - \frac{1}{15} a^{5} + \frac{1}{15} a^{4} + \frac{1}{15} a^{3} + \frac{1}{5} a^{2} + \frac{1}{15} a - \frac{1}{15}$, $\frac{1}{45} a^{12} + \frac{1}{45} a^{11} + \frac{1}{9} a^{10} + \frac{7}{45} a^{9} + \frac{2}{15} a^{8} - \frac{1}{45} a^{7} - \frac{1}{9} a^{6} - \frac{7}{45} a^{5} - \frac{2}{15} a^{4} + \frac{16}{45} a^{3} - \frac{2}{9} a^{2} + \frac{22}{45} a + \frac{7}{45}$, $\frac{1}{45} a^{13} + \frac{1}{45} a^{11} - \frac{7}{45} a^{10} - \frac{4}{45} a^{9} - \frac{4}{45} a^{8} - \frac{1}{45} a^{7} + \frac{22}{45} a^{6} + \frac{4}{45} a^{5} + \frac{19}{45} a^{4} + \frac{16}{45} a^{3} - \frac{7}{45} a^{2} - \frac{2}{5} a - \frac{4}{45}$, $\frac{1}{1845} a^{14} + \frac{1}{1845} a^{13} - \frac{1}{123} a^{12} + \frac{32}{1845} a^{11} + \frac{131}{1845} a^{10} - \frac{92}{615} a^{9} + \frac{29}{369} a^{8} - \frac{137}{1845} a^{7} + \frac{874}{1845} a^{6} - \frac{73}{615} a^{5} - \frac{155}{369} a^{4} + \frac{362}{1845} a^{3} + \frac{254}{615} a^{2} - \frac{136}{369} a - \frac{124}{369}$, $\frac{1}{670022391118640654913533635687189006506946499509057239311957085} a^{15} + \frac{41435058095829419252450412499416795017163620257422887071694}{223340797039546884971177878562396335502315499836352413103985695} a^{14} - \frac{753264435837026149414545387735662407904523777370231930031288}{670022391118640654913533635687189006506946499509057239311957085} a^{13} + \frac{231624884328726932889484161171019889685545503991477966566007}{223340797039546884971177878562396335502315499836352413103985695} a^{12} + \frac{2066918752897018838362193380528398936086156109687175495690477}{74446932346515628323725959520798778500771833278784137701328565} a^{11} - \frac{51517526367938517854213254229225352079151226639129125823817232}{670022391118640654913533635687189006506946499509057239311957085} a^{10} - \frac{21190600708986450086137220826799975645569717826707647134654}{5447336513159680121248240940546252085422329264301278368389895} a^{9} + \frac{3972956773394458828622264737803408170269519486727410009144003}{670022391118640654913533635687189006506946499509057239311957085} a^{8} + \frac{60410011466755864741534887921734922748741408662977582967869}{5447336513159680121248240940546252085422329264301278368389895} a^{7} - \frac{162694218674891204887674620255400496728944564391524548335600793}{670022391118640654913533635687189006506946499509057239311957085} a^{6} + \frac{88949935474193588825582543113626714665020432642362716916967669}{223340797039546884971177878562396335502315499836352413103985695} a^{5} + \frac{264203289167800516286369957599549880856749886599664171991652237}{670022391118640654913533635687189006506946499509057239311957085} a^{4} + \frac{244420424246446773479387652764119994991108776575285147739682589}{670022391118640654913533635687189006506946499509057239311957085} a^{3} - \frac{12749159752447481047797751396124467636674109012395405959642476}{134004478223728130982706727137437801301389299901811447862391417} a^{2} - \frac{1701959731527826719660946141802383372199922615502920601185433}{7052867274933059525405617217759884279020489468516391992757443} a - \frac{58805164101952973827093286721247499000120470843582382873185091}{670022391118640654913533635687189006506946499509057239311957085}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26057831853.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-427}) \), \(\Q(\sqrt{-7}, \sqrt{61})\), 4.4.11122069.1, 4.0.226981.1, 8.0.123700418840761.1, 8.4.369740551915034629.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 61 | Data not computed | ||||||