Normalized defining polynomial
\( x^{16} - 12 x^{14} - 16 x^{13} + 62 x^{12} + 184 x^{11} - 124 x^{10} - 1268 x^{9} - 1715 x^{8} + 2192 x^{7} + 11808 x^{6} + 22092 x^{5} + 25512 x^{4} + 20344 x^{3} + 11688 x^{2} + 4772 x + 1271 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136651472896000000000000=2^{32}\cdot 5^{12}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{38} a^{12} + \frac{4}{19} a^{10} + \frac{3}{38} a^{9} + \frac{4}{19} a^{8} + \frac{8}{19} a^{7} - \frac{2}{19} a^{6} - \frac{13}{38} a^{5} + \frac{4}{19} a^{4} - \frac{5}{19} a^{3} + \frac{9}{19} a^{2} - \frac{7}{38} a + \frac{11}{38}$, $\frac{1}{38} a^{13} + \frac{4}{19} a^{11} + \frac{3}{38} a^{10} + \frac{4}{19} a^{9} - \frac{3}{38} a^{8} - \frac{2}{19} a^{7} - \frac{13}{38} a^{6} + \frac{4}{19} a^{5} + \frac{9}{38} a^{4} + \frac{9}{19} a^{3} - \frac{7}{38} a^{2} + \frac{11}{38} a - \frac{1}{2}$, $\frac{1}{38} a^{14} + \frac{3}{38} a^{11} + \frac{1}{38} a^{10} - \frac{4}{19} a^{9} + \frac{4}{19} a^{8} + \frac{11}{38} a^{7} - \frac{17}{38} a^{6} + \frac{9}{19} a^{5} - \frac{4}{19} a^{4} - \frac{3}{38} a^{3} + \frac{9}{19} a - \frac{6}{19}$, $\frac{1}{4016855779118063398} a^{15} + \frac{546665339375795}{211413462058845442} a^{14} - \frac{46001184495275821}{4016855779118063398} a^{13} - \frac{32160299411684263}{4016855779118063398} a^{12} + \frac{226744350034867147}{4016855779118063398} a^{11} - \frac{368997199644722587}{2008427889559031699} a^{10} - \frac{852047447127689009}{4016855779118063398} a^{9} + \frac{50791118317610760}{2008427889559031699} a^{8} - \frac{115656562325310395}{365168707192551218} a^{7} - \frac{328623564089398912}{2008427889559031699} a^{6} - \frac{712568532213642315}{4016855779118063398} a^{5} + \frac{401366787854933524}{2008427889559031699} a^{4} + \frac{280687100150871945}{2008427889559031699} a^{3} - \frac{1370784352124810137}{4016855779118063398} a^{2} + \frac{49991942933281097}{105706731029422721} a - \frac{770089270104203983}{4016855779118063398}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{63467130865228}{16598577599661419} a^{15} + \frac{104811197031577}{16598577599661419} a^{14} + \frac{666985542003363}{16598577599661419} a^{13} - \frac{397318456410717}{33197155199322838} a^{12} - \frac{4507203073922996}{16598577599661419} a^{11} - \frac{4030088176998308}{16598577599661419} a^{10} + \frac{20524095426219854}{16598577599661419} a^{9} + \frac{2740820929876587}{873609347350601} a^{8} - \frac{4270690606184008}{16598577599661419} a^{7} - \frac{201233002102114842}{16598577599661419} a^{6} - \frac{409138077272766760}{16598577599661419} a^{5} - \frac{457119225824278139}{16598577599661419} a^{4} - \frac{342184947292584278}{16598577599661419} a^{3} - \frac{174589464088802650}{16598577599661419} a^{2} - \frac{54779931927067619}{16598577599661419} a + \frac{10033525485001195}{33197155199322838} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 407604.224227 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |