Normalized defining polynomial
\( x^{16} + 28 x^{14} - 24 x^{13} + 322 x^{12} - 464 x^{11} + 2076 x^{10} - 3352 x^{9} + 8090 x^{8} - 11072 x^{7} + 17748 x^{6} - 18172 x^{5} + 21047 x^{4} - 13424 x^{3} + 11388 x^{2} - 3272 x + 2201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136651472896000000000000=2^{32}\cdot 5^{12}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{5}{11} a^{12} + \frac{4}{11} a^{11} + \frac{2}{11} a^{10} + \frac{5}{11} a^{9} + \frac{5}{11} a^{8} + \frac{4}{11} a^{7} - \frac{1}{11} a^{6} + \frac{3}{11} a^{5} - \frac{5}{11} a^{4} - \frac{3}{11} a^{2} - \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{341} a^{14} - \frac{1}{341} a^{13} + \frac{84}{341} a^{12} - \frac{12}{31} a^{11} + \frac{114}{341} a^{10} + \frac{129}{341} a^{9} + \frac{95}{341} a^{8} + \frac{52}{341} a^{7} + \frac{119}{341} a^{6} - \frac{23}{341} a^{5} + \frac{74}{341} a^{4} + \frac{19}{341} a^{3} + \frac{50}{341} a^{2} - \frac{153}{341} a - \frac{4}{11}$, $\frac{1}{1386216628434009331759921} a^{15} + \frac{55193057750886206590}{44716665433355139734191} a^{14} - \frac{4537952551083224660157}{1386216628434009331759921} a^{13} - \frac{292211647446472044784002}{1386216628434009331759921} a^{12} - \frac{412679157761195626071160}{1386216628434009331759921} a^{11} + \frac{76215745666063661025895}{1386216628434009331759921} a^{10} + \frac{210691501761909244198744}{1386216628434009331759921} a^{9} - \frac{233154876189462028718319}{1386216628434009331759921} a^{8} + \frac{544076508763673309549589}{1386216628434009331759921} a^{7} - \frac{261155725148765339780483}{1386216628434009331759921} a^{6} - \frac{185050001823487474898608}{1386216628434009331759921} a^{5} + \frac{15385022034494561190312}{44716665433355139734191} a^{4} + \frac{243732964454707061457285}{1386216628434009331759921} a^{3} + \frac{195169596288074814306726}{1386216628434009331759921} a^{2} + \frac{366533073587438436995739}{1386216628434009331759921} a - \frac{16264630325301540444732}{44716665433355139734191}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{104946920180765418720}{126019693494000848341811} a^{15} - \frac{35916813025010465556}{126019693494000848341811} a^{14} - \frac{2824288593373935904252}{126019693494000848341811} a^{13} + \frac{1535582371084391883205}{126019693494000848341811} a^{12} - \frac{29903164134058703223136}{126019693494000848341811} a^{11} + \frac{35056465625682938996120}{126019693494000848341811} a^{10} - \frac{169341482662055023179584}{126019693494000848341811} a^{9} + \frac{236313122848646189364357}{126019693494000848341811} a^{8} - \frac{547053725427163451177920}{126019693494000848341811} a^{7} + \frac{611209865805135064641968}{126019693494000848341811} a^{6} - \frac{869784601331702981489832}{126019693494000848341811} a^{5} + \frac{625405454500323757186088}{126019693494000848341811} a^{4} - \frac{53651517354208138961200}{11456335772181895303801} a^{3} - \frac{28505017861626358917948}{126019693494000848341811} a^{2} + \frac{39744327627145959830104}{126019693494000848341811} a - \frac{4352820653989564348342}{4065151403032285430381} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 402011.397978 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |