Normalized defining polynomial
\( x^{16} - 2 x^{15} - 235 x^{14} + 686 x^{13} + 19155 x^{12} - 67142 x^{11} - 526969 x^{10} + 1489066 x^{9} + 7486944 x^{8} - 10128816 x^{7} - 29626320 x^{6} + 54143648 x^{5} + 45164672 x^{4} - 177130496 x^{3} + 492929024 x^{2} + 1321467904 x + 1870659584 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13647448497711210780660288977472356881=17^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $209.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{256} a^{9} + \frac{1}{128} a^{7} - \frac{15}{256} a^{5} + \frac{3}{64} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{256} a^{10} - \frac{1}{32} a^{7} - \frac{3}{256} a^{6} - \frac{3}{128} a^{4} - \frac{3}{32} a^{3} - \frac{7}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{1024} a^{11} - \frac{1}{1024} a^{10} - \frac{1}{512} a^{8} - \frac{19}{1024} a^{7} + \frac{15}{1024} a^{6} + \frac{21}{512} a^{5} + \frac{13}{256} a^{4} - \frac{3}{128} a^{3} - \frac{3}{16} a^{2} - \frac{1}{8} a$, $\frac{1}{2048} a^{12} - \frac{1}{2048} a^{11} - \frac{1}{512} a^{10} - \frac{1}{1024} a^{9} + \frac{5}{2048} a^{8} - \frac{49}{2048} a^{7} - \frac{13}{1024} a^{6} - \frac{3}{512} a^{5} - \frac{13}{256} a^{4} - \frac{5}{32} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8192} a^{13} + \frac{1}{8192} a^{11} - \frac{1}{2048} a^{10} + \frac{3}{8192} a^{9} - \frac{3}{1024} a^{8} - \frac{253}{8192} a^{7} + \frac{23}{2048} a^{6} - \frac{15}{1024} a^{5} + \frac{3}{64} a^{4} + \frac{119}{512} a^{3} + \frac{25}{128} a^{2} - \frac{7}{16} a$, $\frac{1}{65536} a^{14} - \frac{1}{16384} a^{13} + \frac{13}{65536} a^{12} - \frac{3}{16384} a^{11} - \frac{69}{65536} a^{10} - \frac{15}{16384} a^{9} + \frac{15}{65536} a^{8} + \frac{27}{16384} a^{7} + \frac{151}{8192} a^{6} - \frac{111}{2048} a^{5} + \frac{23}{4096} a^{4} + \frac{63}{1024} a^{3} - \frac{1}{64} a^{2} - \frac{7}{16} a$, $\frac{1}{396255298194972886770591427359863279813751996416} a^{15} - \frac{108873432710759649545654296574956857679225}{198127649097486443385295713679931639906875998208} a^{14} - \frac{1935976678377437101804461944156728224139585}{36023208926815716979144675214533025437613817856} a^{13} - \frac{40669994524227796760031854617467752739687169}{198127649097486443385295713679931639906875998208} a^{12} - \frac{119632766009362167605781924753526774535300621}{396255298194972886770591427359863279813751996416} a^{11} + \frac{204628863018252221651987987276482993213194613}{198127649097486443385295713679931639906875998208} a^{10} + \frac{174197261651328389938340421918356932224423143}{396255298194972886770591427359863279813751996416} a^{9} - \frac{89003956479664231154546113260504848703937139}{198127649097486443385295713679931639906875998208} a^{8} + \frac{9525453643531946805343995742439403953356493}{6191489034296451355790491052497863747089874944} a^{7} - \frac{524603612764030233169337792502432349849961611}{24765956137185805423161964209991454988359499776} a^{6} - \frac{1299059074100198556780090613481173663401479757}{24765956137185805423161964209991454988359499776} a^{5} + \frac{673499704276729937889880340468172051935905325}{12382978068592902711580982104995727494179749888} a^{4} - \frac{478395664937538502413691964784103818605079235}{3095744517148225677895245526248931873544937472} a^{3} - \frac{95428343042909734433837448164482904891651749}{386968064643528209736905690781116484193117184} a^{2} + \frac{3376597145190218579465880607272642818468311}{24185504040220513108556605673819780262069824} a + \frac{90217676940189354734204693076131352362583}{755797001256891034642393927306868133189682}$
Class group and class number
$C_{10485034}$, which has order $10485034$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5387761504.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.0.11984473.1, 4.4.704969.1, 4.0.134657.1, 8.0.3694245321809477609.1, 8.8.12782855784807881.1, 8.0.143627593087729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 89 | Data not computed | ||||||