Normalized defining polynomial
\( x^{16} - 6 x^{15} - 6 x^{14} + 174 x^{13} - 704 x^{12} + 266 x^{11} - 566 x^{10} - 61350 x^{9} + 486655 x^{8} - 67436 x^{7} - 2777412 x^{6} - 1040544 x^{5} + 7502144 x^{4} + 8123904 x^{3} - 1187840 x^{2} - 12058624 x + 8388608 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13647448497711210780660288977472356881=17^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $209.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1513=17\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1513}(1,·)$, $\chi_{1513}(322,·)$, $\chi_{1513}(1412,·)$, $\chi_{1513}(902,·)$, $\chi_{1513}(713,·)$, $\chi_{1513}(611,·)$, $\chi_{1513}(101,·)$, $\chi_{1513}(800,·)$, $\chi_{1513}(1123,·)$, $\chi_{1513}(390,·)$, $\chi_{1513}(1191,·)$, $\chi_{1513}(1512,·)$, $\chi_{1513}(749,·)$, $\chi_{1513}(52,·)$, $\chi_{1513}(1461,·)$, $\chi_{1513}(764,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{4} + \frac{7}{32} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} - \frac{7}{128} a^{4} + \frac{3}{16} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{16} a^{4} + \frac{1}{16} a^{2}$, $\frac{1}{256} a^{10} - \frac{1}{256} a^{9} - \frac{1}{128} a^{7} - \frac{3}{256} a^{6} + \frac{15}{256} a^{5} + \frac{5}{128} a^{4} - \frac{11}{64} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{512} a^{11} + \frac{1}{512} a^{9} + \frac{7}{512} a^{7} - \frac{1}{32} a^{6} + \frac{11}{512} a^{5} - \frac{5}{128} a^{3} + \frac{1}{32} a^{2}$, $\frac{1}{8192} a^{12} - \frac{1}{1024} a^{11} + \frac{13}{8192} a^{10} + \frac{7}{2048} a^{9} - \frac{17}{8192} a^{8} - \frac{3}{256} a^{7} + \frac{151}{8192} a^{6} - \frac{101}{2048} a^{5} - \frac{117}{2048} a^{4} - \frac{17}{256} a^{3} - \frac{3}{128} a^{2} - \frac{7}{16} a$, $\frac{1}{8192} a^{13} - \frac{3}{8192} a^{11} + \frac{1}{2048} a^{10} - \frac{1}{8192} a^{9} + \frac{3}{1024} a^{8} - \frac{25}{8192} a^{7} - \frac{23}{2048} a^{6} - \frac{89}{2048} a^{5} + \frac{5}{128} a^{4} + \frac{15}{64} a^{3} - \frac{3}{32} a^{2} + \frac{1}{4} a$, $\frac{1}{2195456} a^{14} - \frac{129}{2195456} a^{13} - \frac{111}{2195456} a^{12} - \frac{105}{2195456} a^{11} + \frac{2367}{2195456} a^{10} + \frac{2233}{2195456} a^{9} - \frac{2437}{2195456} a^{8} - \frac{13555}{2195456} a^{7} + \frac{5825}{548864} a^{6} - \frac{26247}{548864} a^{5} - \frac{3637}{137216} a^{4} - \frac{2595}{34304} a^{3} - \frac{1359}{8576} a^{2} + \frac{107}{1072} a + \frac{15}{67}$, $\frac{1}{140047363626455236161014595584} a^{15} - \frac{9219013757224664414859}{70023681813227618080507297792} a^{14} - \frac{4115853235449699489907371}{70023681813227618080507297792} a^{13} + \frac{651802404849431947364543}{70023681813227618080507297792} a^{12} - \frac{3495296338903101535468177}{8752960226653452260063412224} a^{11} + \frac{31994321898779791587165437}{70023681813227618080507297792} a^{10} + \frac{106630738663856887242595085}{70023681813227618080507297792} a^{9} - \frac{262392688629674452585768475}{70023681813227618080507297792} a^{8} + \frac{781992993730381686397242511}{140047363626455236161014595584} a^{7} + \frac{358628037587549400934331709}{35011840906613809040253648896} a^{6} - \frac{270505398246654153655840097}{35011840906613809040253648896} a^{5} - \frac{103430694382596542375645033}{4376480113326726130031706112} a^{4} + \frac{131364841910469185699344261}{2188240056663363065015853056} a^{3} - \frac{56250145971867726779458833}{273530007082920383126981632} a^{2} + \frac{7429376931888759947665221}{17095625442682523945436352} a - \frac{234464884140984139598391}{534238295083828873294886}$
Class group and class number
$C_{51171146}$, which has order $51171146$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 651512602.568 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{1513}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{17}, \sqrt{89})\), 4.4.704969.1, 4.4.203736041.1, 8.8.41508374402353681.1, 8.0.44231334895529.1, 8.0.3694245321809477609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |