Normalized defining polynomial
\( x^{16} - 8 x^{15} + 37 x^{14} - 104 x^{13} + 218 x^{12} - 320 x^{11} + 361 x^{10} - 232 x^{9} + 28 x^{8} + 96 x^{7} - 101 x^{6} - 12 x^{5} + 103 x^{4} - 8 x^{3} + 28 x^{2} + 48 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136048896000000000000=2^{20}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{1731530204898568} a^{15} + \frac{15495333020546}{216441275612321} a^{14} + \frac{232607080807017}{1731530204898568} a^{13} + \frac{83490839933585}{432882551224642} a^{12} + \frac{118981937561257}{865765102449284} a^{11} + \frac{1856975323686}{11391646084859} a^{10} - \frac{18245813310393}{91133168678872} a^{9} - \frac{91173690541161}{432882551224642} a^{8} + \frac{133730528837019}{432882551224642} a^{7} + \frac{51581748616681}{216441275612321} a^{6} + \frac{335589061147655}{1731530204898568} a^{5} + \frac{54505618134007}{216441275612321} a^{4} + \frac{21414980360253}{91133168678872} a^{3} + \frac{90876054932836}{216441275612321} a^{2} + \frac{98865192422497}{432882551224642} a + \frac{101210009039574}{216441275612321}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{208358580}{6543162599} a^{15} + \frac{7389382705}{26172650396} a^{14} - \frac{9118976275}{6543162599} a^{13} + \frac{112050507145}{26172650396} a^{12} - \frac{62554249555}{6543162599} a^{11} + \frac{202269713339}{13086325198} a^{10} - \frac{123427520750}{6543162599} a^{9} + \frac{403574124525}{26172650396} a^{8} - \frac{38879557495}{6543162599} a^{7} - \frac{14143802310}{6543162599} a^{6} + \frac{23452735268}{6543162599} a^{5} - \frac{3900436725}{26172650396} a^{4} - \frac{27619516490}{6543162599} a^{3} + \frac{70268964955}{26172650396} a^{2} - \frac{4235352685}{6543162599} a - \frac{1651515427}{6543162599} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6942.44507571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.2.3600.1, 4.2.400.1, 4.0.13500.2, 4.0.13500.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.182250000.1, 8.0.12960000.2, 8.0.2916000000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |