Normalized defining polynomial
\( x^{16} - 2 x^{15} - 8 x^{14} + 10 x^{13} + 63 x^{12} - 98 x^{11} - 86 x^{10} + 48 x^{9} + 757 x^{8} - 1896 x^{7} + 2378 x^{6} - 1668 x^{5} + 404 x^{4} + 296 x^{3} - 184 x^{2} + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136048896000000000000=2^{20}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{4} a^{8} + \frac{1}{3} a^{6} + \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{4} a^{9} + \frac{1}{3} a^{7} + \frac{1}{12} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{264} a^{14} - \frac{1}{132} a^{13} - \frac{1}{44} a^{12} + \frac{1}{44} a^{11} + \frac{7}{264} a^{10} - \frac{43}{132} a^{9} + \frac{2}{33} a^{8} + \frac{13}{66} a^{7} + \frac{43}{88} a^{6} + \frac{7}{33} a^{5} + \frac{7}{22} a^{4} + \frac{7}{66} a^{3} - \frac{1}{3} a + \frac{10}{33}$, $\frac{1}{2528420553627144} a^{15} + \frac{1478822526283}{1264210276813572} a^{14} - \frac{3937395561113}{114928206983052} a^{13} - \frac{28876355234803}{1264210276813572} a^{12} - \frac{14390182995283}{229856413966104} a^{11} + \frac{27703853102921}{421403425604524} a^{10} + \frac{1595424807629}{316052569203393} a^{9} + \frac{73866875854327}{316052569203393} a^{8} + \frac{1015045419242641}{2528420553627144} a^{7} - \frac{1049731126357}{210701712802262} a^{6} + \frac{244501857498713}{632105138406786} a^{5} + \frac{931449643933}{2899564855077} a^{4} - \frac{72533459078195}{316052569203393} a^{3} + \frac{11001523455493}{57464103491526} a^{2} - \frac{46473533853553}{105350856401131} a + \frac{18569914885655}{105350856401131}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{113228593}{1491719064} a^{15} + \frac{223667255}{1491719064} a^{14} + \frac{151524195}{248619844} a^{13} - \frac{540949465}{745859532} a^{12} - \frac{7154801365}{1491719064} a^{11} + \frac{3563010075}{497239688} a^{10} + \frac{1223706185}{186464883} a^{9} - \frac{1784062055}{745859532} a^{8} - \frac{28606393535}{497239688} a^{7} + \frac{209896644725}{1491719064} a^{6} - \frac{44764569493}{248619844} a^{5} + \frac{307129985}{2280916} a^{4} - \frac{8559260455}{186464883} a^{3} - \frac{120169955}{16951353} a^{2} + \frac{430292905}{62154961} a - \frac{46449853}{186464883} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5165.64894396 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4.D_4$ |
| Character table for $C_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.2.2000.1, 4.2.18000.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.324000000.4, 8.0.7290000.1, 8.0.2916000000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ |
| 2.8.12.15 | $x^{8} + 2 x^{7} + 2 x^{4} + 12$ | $4$ | $2$ | $12$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 5 | Data not computed | ||||||