Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 8 x^{13} + 46 x^{12} - 168 x^{11} + 338 x^{10} - 520 x^{9} + 786 x^{8} - 1108 x^{7} + 1370 x^{6} - 1512 x^{5} + 1406 x^{4} - 960 x^{3} + 430 x^{2} - 112 x + 13 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136016004388491362304=2^{32}\cdot 3^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{26} a^{12} - \frac{1}{13} a^{10} + \frac{2}{13} a^{9} - \frac{3}{13} a^{8} - \frac{2}{13} a^{7} - \frac{3}{13} a^{6} - \frac{3}{13} a^{5} - \frac{1}{26} a^{4} + \frac{5}{13} a^{3} + \frac{4}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{26} a^{13} - \frac{1}{13} a^{11} + \frac{2}{13} a^{10} - \frac{3}{13} a^{9} - \frac{2}{13} a^{8} - \frac{3}{13} a^{7} - \frac{3}{13} a^{6} - \frac{1}{26} a^{5} + \frac{5}{13} a^{4} + \frac{4}{13} a^{3} - \frac{5}{13} a^{2}$, $\frac{1}{442} a^{14} + \frac{5}{442} a^{13} + \frac{2}{221} a^{12} - \frac{71}{442} a^{11} - \frac{25}{221} a^{10} + \frac{8}{221} a^{9} - \frac{75}{442} a^{8} - \frac{30}{221} a^{7} + \frac{167}{442} a^{6} - \frac{83}{442} a^{5} - \frac{2}{17} a^{4} + \frac{3}{26} a^{3} + \frac{38}{221} a^{2} + \frac{100}{221} a - \frac{13}{34}$, $\frac{1}{114247718} a^{15} + \frac{30129}{114247718} a^{14} - \frac{418043}{114247718} a^{13} - \frac{1208057}{114247718} a^{12} + \frac{50447}{338011} a^{11} + \frac{24509239}{114247718} a^{10} + \frac{11682898}{57123859} a^{9} - \frac{7632826}{57123859} a^{8} - \frac{3683597}{114247718} a^{7} + \frac{17350117}{114247718} a^{6} - \frac{272327}{8788286} a^{5} - \frac{2278693}{6720454} a^{4} - \frac{17743814}{57123859} a^{3} - \frac{12025719}{114247718} a^{2} + \frac{5569872}{57123859} a + \frac{79877}{258479}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6639142}{57123859} a^{15} - \frac{7481177}{57123859} a^{14} - \frac{23148547}{57123859} a^{13} + \frac{28720955}{114247718} a^{12} + \frac{16199228}{4394143} a^{11} - \frac{315525233}{57123859} a^{10} - \frac{388192353}{57123859} a^{9} + \frac{1029439531}{57123859} a^{8} - \frac{1131794376}{57123859} a^{7} + \frac{2456307895}{57123859} a^{6} - \frac{320817685}{4394143} a^{5} + \frac{10499477289}{114247718} a^{4} - \frac{6680245606}{57123859} a^{3} + \frac{6827623869}{57123859} a^{2} - \frac{216874703}{3360227} a + \frac{63682999}{4394143} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25054.9537521 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), 4.4.7488.1, 4.0.7488.1, \(\Q(\zeta_{12})\), 8.4.11662589952.1, 8.4.11662589952.2, 8.0.56070144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |