Normalized defining polynomial
\( x^{16} - 4 x^{15} + 29 x^{14} - 84 x^{13} + 319 x^{12} - 944 x^{11} + 2090 x^{10} - 4899 x^{9} + 10309 x^{8} - 16629 x^{7} + 25877 x^{6} - 42862 x^{5} + 53241 x^{4} - 50012 x^{3} + 59905 x^{2} - 62675 x + 26711 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13573982477229290545823357041=13^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{424} a^{12} - \frac{3}{424} a^{11} + \frac{2}{53} a^{10} - \frac{19}{212} a^{9} - \frac{37}{212} a^{8} - \frac{1}{8} a^{7} + \frac{81}{424} a^{6} + \frac{77}{212} a^{5} - \frac{85}{424} a^{4} + \frac{137}{424} a^{3} + \frac{45}{424} a^{2} - \frac{17}{424} a - \frac{187}{424}$, $\frac{1}{424} a^{13} + \frac{7}{424} a^{11} + \frac{5}{212} a^{10} + \frac{3}{53} a^{9} - \frac{63}{424} a^{8} - \frac{39}{212} a^{7} - \frac{27}{424} a^{6} + \frac{165}{424} a^{5} + \frac{47}{212} a^{4} - \frac{45}{106} a^{3} + \frac{59}{212} a^{2} + \frac{93}{212} a + \frac{75}{424}$, $\frac{1}{424} a^{14} + \frac{31}{424} a^{11} - \frac{11}{53} a^{10} - \frac{9}{424} a^{9} + \frac{2}{53} a^{8} - \frac{10}{53} a^{7} + \frac{11}{212} a^{6} + \frac{19}{106} a^{5} - \frac{9}{424} a^{4} - \frac{205}{424} a^{3} + \frac{83}{424} a^{2} - \frac{9}{212} a + \frac{37}{424}$, $\frac{1}{2582374431483340904} a^{15} - \frac{363657674993583}{1291187215741670452} a^{14} - \frac{689835413876075}{2582374431483340904} a^{13} + \frac{983215842004861}{1291187215741670452} a^{12} + \frac{112811203546094891}{645593607870835226} a^{11} - \frac{96962666339977319}{2582374431483340904} a^{10} + \frac{30859427979584765}{322796803935417613} a^{9} + \frac{510435876437688663}{2582374431483340904} a^{8} - \frac{996684759929018515}{2582374431483340904} a^{7} - \frac{302793408732604877}{645593607870835226} a^{6} + \frac{515373396929503723}{1291187215741670452} a^{5} - \frac{209858791956068507}{645593607870835226} a^{4} + \frac{46461942668999185}{322796803935417613} a^{3} + \frac{292468114061011637}{2582374431483340904} a^{2} - \frac{75908622359206683}{645593607870835226} a + \frac{4468468561387484}{322796803935417613}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 506567.420659 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |