Normalized defining polynomial
\( x^{16} - 19 x^{14} - 28 x^{13} + 176 x^{12} + 178 x^{11} - 389 x^{10} - 1671 x^{9} + 3890 x^{8} + 9181 x^{7} + 8065 x^{6} - 17091 x^{5} - 27083 x^{4} + 27781 x^{3} + 45006 x^{2} - 36777 x + 23699 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13573982477229290545823357041=13^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(221=13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{221}(64,·)$, $\chi_{221}(1,·)$, $\chi_{221}(135,·)$, $\chi_{221}(200,·)$, $\chi_{221}(203,·)$, $\chi_{221}(18,·)$, $\chi_{221}(21,·)$, $\chi_{221}(86,·)$, $\chi_{221}(220,·)$, $\chi_{221}(157,·)$, $\chi_{221}(38,·)$, $\chi_{221}(103,·)$, $\chi_{221}(174,·)$, $\chi_{221}(47,·)$, $\chi_{221}(118,·)$, $\chi_{221}(183,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{3} a^{4} + \frac{1}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{12} a^{5} - \frac{5}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{12} a^{2} - \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{60} a^{14} - \frac{1}{60} a^{12} - \frac{1}{20} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} - \frac{2}{5} a^{7} + \frac{1}{12} a^{6} - \frac{13}{30} a^{5} + \frac{1}{6} a^{4} - \frac{1}{15} a^{3} + \frac{11}{30} a^{2} - \frac{7}{20} a + \frac{9}{20}$, $\frac{1}{26445054850928824703609106573699660} a^{15} - \frac{12033731247818544938432565780677}{6611263712732206175902276643424915} a^{14} - \frac{578984363891092865434221189831311}{26445054850928824703609106573699660} a^{13} - \frac{166278955316223304672646006333479}{5289010970185764940721821314739932} a^{12} + \frac{1006975226884529557723064366773991}{13222527425464412351804553286849830} a^{11} + \frac{127242014167622436549589034675486}{1322252742546441235180455328684983} a^{10} - \frac{1102922035927074369962574962273049}{8815018283642941567869702191233220} a^{9} - \frac{249753009024504974162381575648812}{2203754570910735391967425547808305} a^{8} + \frac{3591735964157441260938670282435817}{26445054850928824703609106573699660} a^{7} + \frac{1332943668542946119392405269174209}{4407509141821470783934851095616610} a^{6} - \frac{351433356856523501470205720511586}{2203754570910735391967425547808305} a^{5} + \frac{95904379929398505967799015814173}{2203754570910735391967425547808305} a^{4} + \frac{717560850954022222634370091551181}{6611263712732206175902276643424915} a^{3} + \frac{5353772528275138509838169991933703}{26445054850928824703609106573699660} a^{2} - \frac{125102008977354070098197991519297}{1763003656728588313573940438246644} a + \frac{521093644271396825469634288993676}{6611263712732206175902276643424915}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 534329.701793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |