Normalized defining polynomial
\( x^{16} - 3 x^{15} + 7 x^{14} - 11 x^{13} - 67 x^{12} + 160 x^{11} - 80 x^{10} + 98 x^{9} + 2181 x^{8} - 1261 x^{7} + 14531 x^{6} - 13409 x^{5} + 47122 x^{4} - 17549 x^{3} + 62369 x^{2} - 47493 x + 17807 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(134425712786353297191406374912=2^{12}\cdot 3^{8}\cdot 17^{9}\cdot 59^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{54373554190367417017470015948065682} a^{15} + \frac{2011581619772637889208573593694323}{27186777095183708508735007974032841} a^{14} - \frac{819127819348171770445887616163602}{9062259031727902836245002658010947} a^{13} + \frac{1299531019426885684048611516199631}{18124518063455805672490005316021894} a^{12} + \frac{4151920571142633539901549783434056}{27186777095183708508735007974032841} a^{11} - \frac{3311882898804873933045746631461485}{54373554190367417017470015948065682} a^{10} + \frac{6661368653187115404614008504204885}{54373554190367417017470015948065682} a^{9} + \frac{1797178724020693882983499786171087}{18124518063455805672490005316021894} a^{8} - \frac{1077003915616138364056547559109537}{27186777095183708508735007974032841} a^{7} - \frac{3827167686772993019471195007739301}{54373554190367417017470015948065682} a^{6} + \frac{11614305925398569215320174015000557}{54373554190367417017470015948065682} a^{5} + \frac{3200301465385443057500530016106587}{18124518063455805672490005316021894} a^{4} + \frac{5236324555552904300891594365711689}{18124518063455805672490005316021894} a^{3} + \frac{1173008227909615189910512097886649}{54373554190367417017470015948065682} a^{2} + \frac{26807356841703306064935071407602475}{54373554190367417017470015948065682} a - \frac{2420976161236691039620686136601055}{18124518063455805672490005316021894}$
Class group and class number
$C_{2}\times C_{140}$, which has order $280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315791.241781 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 104 conjugacy class representatives for t16n1849 are not computed |
| Character table for t16n1849 is not computed |
Intermediate fields
| 4.4.51153.1, 8.8.463143405393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.12.12.13 | $x^{12} - 18 x^{10} - 13 x^{8} - 44 x^{6} + 55 x^{4} + 62 x^{2} + 21$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.5.1 | $x^{6} - 17$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $59$ | 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.8.6.1 | $x^{8} - 59 x^{4} + 55696$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |