Normalized defining polynomial
\( x^{16} - 5 x^{15} - 21 x^{14} + 110 x^{13} + 182 x^{12} - 515 x^{11} + 1132 x^{10} + 7450 x^{9} + 6125 x^{8} - 55475 x^{7} - 145282 x^{6} + 16280 x^{5} + 430002 x^{4} + 532430 x^{3} + 278706 x^{2} + 67150 x + 6241 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133756252636842779541015625=5^{14}\cdot 23^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} - \frac{3}{19} a^{13} - \frac{6}{19} a^{12} - \frac{3}{19} a^{11} - \frac{7}{19} a^{10} - \frac{3}{19} a^{9} - \frac{9}{19} a^{8} - \frac{3}{19} a^{7} + \frac{2}{19} a^{6} + \frac{3}{19} a^{5} + \frac{2}{19} a^{4} + \frac{7}{19} a^{3} - \frac{7}{19} a^{2} - \frac{7}{19} a + \frac{5}{19}$, $\frac{1}{1665983283550497346468155139122711346287311} a^{15} - \frac{35064844480264641229224546553685277234343}{1665983283550497346468155139122711346287311} a^{14} - \frac{545922848506673161788278634126392895974515}{1665983283550497346468155139122711346287311} a^{13} - \frac{31215810646587713973094807010178817422219}{1665983283550497346468155139122711346287311} a^{12} + \frac{98540421796428396340376249794514945659299}{1665983283550497346468155139122711346287311} a^{11} + \frac{709080700534995069167081121748602896407875}{1665983283550497346468155139122711346287311} a^{10} + \frac{558497305761601716894686241151490503980188}{1665983283550497346468155139122711346287311} a^{9} + \frac{742533240236105646299520670391081160417933}{1665983283550497346468155139122711346287311} a^{8} + \frac{563371297264160675908865359834530688818754}{1665983283550497346468155139122711346287311} a^{7} - \frac{289646790518763573183827059649912354800967}{1665983283550497346468155139122711346287311} a^{6} + \frac{65831782147515166414704968702665515822589}{1665983283550497346468155139122711346287311} a^{5} + \frac{754476885226341506237051527532233619501086}{1665983283550497346468155139122711346287311} a^{4} + \frac{35908552195636773048070207708971486626403}{87683330713184070866745007322247965594069} a^{3} - \frac{711109347016559563248739797959843132406808}{1665983283550497346468155139122711346287311} a^{2} - \frac{380516424447339336425754523848146169618605}{1665983283550497346468155139122711346287311} a - \frac{8238340628783506284653468904792588690463}{21088395994310092993267786571173561345409}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{34004432469419675678390648448196388309}{87683330713184070866745007322247965594069} a^{15} - \frac{183398344734400699382289541256132243343}{87683330713184070866745007322247965594069} a^{14} - \frac{640592876333536080597402206555719373562}{87683330713184070866745007322247965594069} a^{13} + \frac{3984521784620430631373736893572871265652}{87683330713184070866745007322247965594069} a^{12} + \frac{4600571046432374938063448896672044128770}{87683330713184070866745007322247965594069} a^{11} - \frac{19159107446462251156630504747247256647893}{87683330713184070866745007322247965594069} a^{10} + \frac{46122620851432188954667029663805229489203}{87683330713184070866745007322247965594069} a^{9} + \frac{234503206830880207099733159749956994631530}{87683330713184070866745007322247965594069} a^{8} + \frac{118205252162635714165400131878550341630352}{87683330713184070866745007322247965594069} a^{7} - \frac{1924940906148433575085785509679511458058107}{87683330713184070866745007322247965594069} a^{6} - \frac{4179698863905664882822429731103070940831611}{87683330713184070866745007322247965594069} a^{5} + \frac{2124055519087590736830968716508610481228918}{87683330713184070866745007322247965594069} a^{4} + \frac{13658012416846087993308489896178968421633846}{87683330713184070866745007322247965594069} a^{3} + \frac{12846708953776047403792289472879709202958617}{87683330713184070866745007322247965594069} a^{2} + \frac{4847135878059862922126394330256539578028799}{87683330713184070866745007322247965594069} a + \frac{9092834319523432404194409852251492074732}{1109915578647899631224620345851240070811} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1890649.08655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{5}, \sqrt{-23})\), 4.4.66125.1, \(\Q(\zeta_{5})\), 8.0.4372515625.1, 8.4.11565303828125.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||