Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 17 x^{13} - 17 x^{12} - 18 x^{11} + 165 x^{10} - 312 x^{9} - 532 x^{8} + 1736 x^{7} + 809 x^{6} - 3224 x^{5} + 1091 x^{4} - 168 x^{3} - 7551 x^{2} + 810 x + 18225 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13345917567985773647041=11^{8}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{315} a^{14} - \frac{2}{105} a^{13} - \frac{46}{315} a^{12} - \frac{4}{315} a^{11} + \frac{2}{45} a^{10} - \frac{8}{105} a^{9} + \frac{52}{105} a^{8} + \frac{11}{35} a^{7} - \frac{43}{315} a^{6} - \frac{4}{105} a^{5} + \frac{82}{315} a^{4} - \frac{11}{45} a^{3} + \frac{94}{315} a^{2} + \frac{52}{105} a + \frac{3}{7}$, $\frac{1}{5839755134352304093672275} a^{15} + \frac{940522111528471781779}{834250733478900584810325} a^{14} + \frac{45517165261460994281102}{1167951026870460818734455} a^{13} - \frac{55703874540324843513094}{834250733478900584810325} a^{12} - \frac{883247673811930408179782}{5839755134352304093672275} a^{11} + \frac{79031745224564689616033}{648861681594700454852475} a^{10} - \frac{2254574253072278158097}{77863401791364054582297} a^{9} + \frac{374340865711587381466771}{1946585044784101364557425} a^{8} - \frac{2850530445523588570213942}{5839755134352304093672275} a^{7} + \frac{638603735425645983004826}{5839755134352304093672275} a^{6} - \frac{2145974918149963845042886}{5839755134352304093672275} a^{5} + \frac{163052098137636704987146}{5839755134352304093672275} a^{4} + \frac{173277610291963252745246}{5839755134352304093672275} a^{3} - \frac{457492400899308989545721}{1946585044784101364557425} a^{2} + \frac{24348694826200051223518}{92694525942100064978925} a + \frac{6236500119336681808441}{14419148479882232330055}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44918.3429831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-583}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{53})\), 4.2.30899.1 x2, 4.0.6413.1 x2, 8.0.115524532321.1, 8.2.10502230211.1 x4, 8.0.2179708157.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |