Normalized defining polynomial
\( x^{16} - 4 x^{15} + 18 x^{14} - 78 x^{13} + 256 x^{12} - 664 x^{11} + 1580 x^{10} - 1874 x^{9} + 1954 x^{8} - 1378 x^{7} - 3600 x^{6} + 3618 x^{5} - 89 x^{4} - 2506 x^{3} + 4432 x^{2} + 5658 x + 1681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13344870400000000000000=2^{24}\cdot 5^{14}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{12} - \frac{5}{11} a^{11} + \frac{1}{11} a^{9} + \frac{3}{11} a^{8} + \frac{1}{11} a^{7} + \frac{4}{11} a^{6} + \frac{5}{11} a^{5} + \frac{4}{11} a^{2} + \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{14} - \frac{3}{11} a^{12} - \frac{4}{11} a^{11} + \frac{1}{11} a^{10} - \frac{5}{11} a^{9} - \frac{1}{11} a^{8} - \frac{4}{11} a^{7} - \frac{5}{11} a^{6} + \frac{4}{11} a^{5} + \frac{4}{11} a^{3} + \frac{4}{11} a^{2} - \frac{5}{11}$, $\frac{1}{53761556375033425489631361713071} a^{15} + \frac{2329118095078578287124934976682}{53761556375033425489631361713071} a^{14} + \frac{237729086798537515773094964542}{53761556375033425489631361713071} a^{13} - \frac{515019221647765130056275805304}{4887414215912129589966487428461} a^{12} - \frac{16229958783315454725327861881456}{53761556375033425489631361713071} a^{11} + \frac{6539058814960712957446208866731}{53761556375033425489631361713071} a^{10} + \frac{1576879770187992055821597832803}{4887414215912129589966487428461} a^{9} - \frac{14591972609723207936465756477734}{53761556375033425489631361713071} a^{8} - \frac{6622577261738805014080105564864}{53761556375033425489631361713071} a^{7} + \frac{21757792305204584010377619608890}{53761556375033425489631361713071} a^{6} + \frac{20317710428584548127171201698232}{53761556375033425489631361713071} a^{5} - \frac{15985694829672072298484094927827}{53761556375033425489631361713071} a^{4} - \frac{312494650330654256419610763962}{4887414215912129589966487428461} a^{3} - \frac{5818234731715382058606926782972}{53761556375033425489631361713071} a^{2} - \frac{12560915466810877207749819039209}{53761556375033425489631361713071} a - \frac{52819798131380790744513974562}{1311257472561790865600764919831}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{59162391136029444622593864880}{53761556375033425489631361713071} a^{15} - \frac{262086708774237669068312987924}{53761556375033425489631361713071} a^{14} + \frac{1167781928564663806335430793875}{53761556375033425489631361713071} a^{13} - \frac{462101491971895493519597014380}{4887414215912129589966487428461} a^{12} + \frac{17176282165280160906818359389273}{53761556375033425489631361713071} a^{11} - \frac{46003932229593402866589130622668}{53761556375033425489631361713071} a^{10} + \frac{10106670243900329341394339664923}{4887414215912129589966487428461} a^{9} - \frac{153553846164501328043636065092076}{53761556375033425489631361713071} a^{8} + \frac{169751538691975711035208108544369}{53761556375033425489631361713071} a^{7} - \frac{144658921778841370097550585077891}{53761556375033425489631361713071} a^{6} - \frac{160832136102961943528791507104298}{53761556375033425489631361713071} a^{5} + \frac{287683733174569650100306614727302}{53761556375033425489631361713071} a^{4} - \frac{8433475979231294465638580398560}{4887414215912129589966487428461} a^{3} - \frac{115292229998716712617591921659693}{53761556375033425489631361713071} a^{2} + \frac{298392789493962175986333164970975}{53761556375033425489631361713071} a + \frac{5546788651355150726313373342390}{1311257472561790865600764919831} \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58305.1656546 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^3.C_4$ (as 16T99):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^3.C_4$ |
| Character table for $C_2\times C_2^3.C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), \(\Q(i, \sqrt{5})\), 8.0.115520000000.1, 8.8.115520000000.1, \(\Q(\zeta_{20})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |