Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} + 32 x^{13} + 6 x^{12} - 24 x^{11} + 560 x^{10} + 996 x^{9} + 939 x^{8} + 2952 x^{7} + 9480 x^{6} + 10748 x^{5} + 10406 x^{4} + 19284 x^{3} + 25992 x^{2} + 9348 x + 1681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13344870400000000000000=2^{24}\cdot 5^{14}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{55832324} a^{14} - \frac{617885}{13958081} a^{13} + \frac{542985}{13958081} a^{12} - \frac{973703}{13958081} a^{11} + \frac{2796297}{55832324} a^{10} - \frac{1942233}{27916162} a^{9} - \frac{2106303}{55832324} a^{8} + \frac{2714876}{13958081} a^{7} - \frac{2164077}{55832324} a^{6} + \frac{12387709}{27916162} a^{5} + \frac{4372031}{55832324} a^{4} + \frac{1491658}{13958081} a^{3} + \frac{4037755}{27916162} a^{2} + \frac{8304867}{27916162} a - \frac{220555}{1361764}$, $\frac{1}{47131514952960917776004} a^{15} + \frac{305896008395827}{47131514952960917776004} a^{14} + \frac{2315600267909657161649}{23565757476480458888002} a^{13} - \frac{953039184550841666291}{47131514952960917776004} a^{12} + \frac{181434216973937041492}{11782878738240229444001} a^{11} - \frac{10222892458685649640}{11782878738240229444001} a^{10} + \frac{2503263169977291280645}{23565757476480458888002} a^{9} - \frac{1999736771552545661843}{23565757476480458888002} a^{8} - \frac{10462687544746548188547}{23565757476480458888002} a^{7} + \frac{2225116064909022916725}{11782878738240229444001} a^{6} + \frac{9559038440352988583433}{23565757476480458888002} a^{5} + \frac{3210937519126360890539}{23565757476480458888002} a^{4} - \frac{15703729451443768378183}{47131514952960917776004} a^{3} - \frac{1825149790545486512565}{47131514952960917776004} a^{2} + \frac{5914184653807470842165}{23565757476480458888002} a - \frac{13628624462469407093}{1149549145194168726244}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2367468339397634019}{23565757476480458888002} a^{15} - \frac{18038644823073958379}{47131514952960917776004} a^{14} + \frac{32117244458446422227}{47131514952960917776004} a^{13} + \frac{166814659303820946597}{47131514952960917776004} a^{12} + \frac{10732071663573230770}{11782878738240229444001} a^{11} - \frac{208225249818524945407}{47131514952960917776004} a^{10} + \frac{2741515145599175945199}{47131514952960917776004} a^{9} + \frac{1229786553555552672977}{11782878738240229444001} a^{8} + \frac{978734934494837519044}{11782878738240229444001} a^{7} + \frac{12948715944275367143149}{47131514952960917776004} a^{6} + \frac{46364196887923842690521}{47131514952960917776004} a^{5} + \frac{10386183304649914637900}{11782878738240229444001} a^{4} + \frac{19753059248371044864825}{23565757476480458888002} a^{3} + \frac{34676210844319875127845}{23565757476480458888002} a^{2} + \frac{47431103308213952015735}{23565757476480458888002} a - \frac{614626835375351826421}{1149549145194168726244} \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79151.1938244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^3.C_4$ (as 16T99):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^3.C_4$ |
| Character table for $C_2\times C_2^3.C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), \(\Q(i, \sqrt{5})\), 8.4.115520000000.2, 8.4.115520000000.1, \(\Q(\zeta_{20})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |