Normalized defining polynomial
\( x^{16} - 6 x^{15} + 105 x^{14} - 408 x^{13} + 4652 x^{12} - 10890 x^{11} + 126961 x^{10} - 161292 x^{9} + 2575242 x^{8} - 1143834 x^{7} + 38538631 x^{6} + 6656512 x^{5} + 412202236 x^{4} + 148490330 x^{3} + 2954375151 x^{2} + 439070820 x + 10083216917 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13307764731675384304522756096=2^{24}\cdot 257^{4}\cdot 653^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257, 653$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{67492} a^{14} - \frac{1583}{16873} a^{13} + \frac{1628}{16873} a^{12} + \frac{3380}{16873} a^{11} + \frac{1318}{16873} a^{10} + \frac{7861}{33746} a^{9} - \frac{11867}{67492} a^{8} - \frac{7391}{33746} a^{7} + \frac{10961}{67492} a^{6} - \frac{3459}{16873} a^{5} + \frac{3845}{16873} a^{4} - \frac{7891}{33746} a^{3} - \frac{9727}{33746} a^{2} - \frac{9565}{33746} a - \frac{22437}{67492}$, $\frac{1}{32582393535588200840382748503779015719946664317693589533476} a^{15} - \frac{3544501632960606563254085549736109816950118027172023}{8145598383897050210095687125944753929986666079423397383369} a^{14} + \frac{3310547815140451454649211967322790992307939763605755778989}{32582393535588200840382748503779015719946664317693589533476} a^{13} - \frac{2703275108909053701530208955091575766024685291958534578643}{32582393535588200840382748503779015719946664317693589533476} a^{12} + \frac{6312400801031181241298881389139619141259891951721364193279}{32582393535588200840382748503779015719946664317693589533476} a^{11} - \frac{4934395008047844091926089608033644218154987096906676142281}{32582393535588200840382748503779015719946664317693589533476} a^{10} - \frac{71698260784789230415296672525767009133166222075198264589}{346621207825406391918965409614670379999432599124399888654} a^{9} + \frac{2155433077335695201315921138887498005781431820589662998101}{32582393535588200840382748503779015719946664317693589533476} a^{8} + \frac{2296614880000087206177357579666754247826785340118099144223}{32582393535588200840382748503779015719946664317693589533476} a^{7} + \frac{877138980439782932533846642436909113188080668847877351318}{8145598383897050210095687125944753929986666079423397383369} a^{6} + \frac{10550846993713583941606674512008594321381316277991057586791}{32582393535588200840382748503779015719946664317693589533476} a^{5} - \frac{13086558646572076037717898259810756702988564114211294630953}{32582393535588200840382748503779015719946664317693589533476} a^{4} - \frac{1631167187826606622696464754599553414587782340633818028779}{32582393535588200840382748503779015719946664317693589533476} a^{3} - \frac{10742900491440233788939005286622167979518101936635580455627}{32582393535588200840382748503779015719946664317693589533476} a^{2} - \frac{4708526389940565151029785284685184754436551547037563936445}{16291196767794100420191374251889507859973332158846794766738} a - \frac{3912638506918456951293075269104803346546441951334360505557}{32582393535588200840382748503779015719946664317693589533476}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16591642.4284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 45 conjugacy class representatives for t16n1535 |
| Character table for t16n1535 is not computed |
Intermediate fields
| 4.0.257.1, 8.0.4227136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.24.283 | $x^{12} + 4 x^{11} - 8 x^{10} - 8 x^{9} + 16 x^{8} + 4 x^{6} + 8 x^{5} - 12 x^{4} + 16 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T60 | $[2, 2, 3, 3]^{6}$ | |
| 257 | Data not computed | ||||||
| 653 | Data not computed | ||||||