Normalized defining polynomial
\( x^{16} - 3 x^{15} + 56 x^{14} + 69 x^{13} + 1678 x^{12} + 5781 x^{11} + 37474 x^{10} + 139787 x^{9} + 660655 x^{8} + 3059488 x^{7} + 3335124 x^{6} + 34822900 x^{5} - 58200277 x^{4} - 258867117 x^{3} - 157364690 x^{2} - 4407745227 x + 10994598253 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13307764731675384304522756096=2^{24}\cdot 257^{4}\cdot 653^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257, 653$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{2}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} + \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{2} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{231189292306501068927672608155471596829351968926234992459863934609401756} a^{15} - \frac{2790959817827236498806020378333683758243247623548375816798478551398151}{115594646153250534463836304077735798414675984463117496229931967304700878} a^{14} - \frac{294198870598396495541855398586410914005447130348341216414311395451805}{12843849572583392718204033786415088712741776051457499581103551922744542} a^{13} + \frac{13370203917903357644032345767605920288579629703546735513896124338244517}{77063097435500356309224202718490532276450656308744997486621311536467252} a^{12} + \frac{29121312933446814179198866451397993199246350942321759661038570638273773}{231189292306501068927672608155471596829351968926234992459863934609401756} a^{11} + \frac{50590009365517085424087086317001569118940385086139308779695276478351665}{115594646153250534463836304077735798414675984463117496229931967304700878} a^{10} + \frac{16402701680141887557062659945920960298034548985434655882060363269095794}{57797323076625267231918152038867899207337992231558748114965983652350439} a^{9} - \frac{3056059982290580781452890366896550879712362542552558029218857567553323}{8562566381722261812136022524276725808494517367638333054069034615163028} a^{8} - \frac{6578457139094116851685645470209357854968216871590797184883863752253613}{115594646153250534463836304077735798414675984463117496229931967304700878} a^{7} + \frac{1765057749656039541748548209270726295974841420858142075254910937732759}{38531548717750178154612101359245266138225328154372498743310655768233626} a^{6} + \frac{6416892016176701872138921144052709303595182356977707300016824260738455}{12843849572583392718204033786415088712741776051457499581103551922744542} a^{5} + \frac{54434328528154540056686128135609480137240254728778951258579143358815037}{115594646153250534463836304077735798414675984463117496229931967304700878} a^{4} + \frac{101630791222516058160260103384990539598449680320427062191547526865796853}{231189292306501068927672608155471596829351968926234992459863934609401756} a^{3} + \frac{22846930855996478333503425128386851788533550817722933010150136630278344}{57797323076625267231918152038867899207337992231558748114965983652350439} a^{2} + \frac{49116018757254808789338259555314733403843191028430521551236888899127403}{115594646153250534463836304077735798414675984463117496229931967304700878} a - \frac{53320875799402228039207966018145423031174244438933594923643550349726509}{231189292306501068927672608155471596829351968926234992459863934609401756}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20648686.1814 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 45 conjugacy class representatives for t16n1535 |
| Character table for t16n1535 is not computed |
Intermediate fields
| 4.0.257.1, 8.0.4227136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.24.283 | $x^{12} + 4 x^{11} - 8 x^{10} - 8 x^{9} + 16 x^{8} + 4 x^{6} + 8 x^{5} - 12 x^{4} + 16 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T60 | $[2, 2, 3, 3]^{6}$ | |
| 257 | Data not computed | ||||||
| 653 | Data not computed | ||||||