Normalized defining polynomial
\( x^{16} - 3 x^{15} + 18 x^{14} + 115 x^{13} + 114 x^{12} + 6557 x^{11} - 10932 x^{10} + 42281 x^{9} + 487271 x^{8} - 889884 x^{7} + 2560152 x^{6} - 5037856 x^{5} - 108688217 x^{4} - 98379265 x^{3} + 418620720 x^{2} - 450986573 x + 11398824137 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13307764731675384304522756096=2^{24}\cdot 257^{4}\cdot 653^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257, 653$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{9443891867056846028644181241954322749058379263491382451929124171943044594} a^{15} + \frac{1621363634246002850458614344914187432651151182959090273763748214760319884}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{14} + \frac{1749082488501697091048166295357378410765282518349629251877810984329197715}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{13} + \frac{3712698925091861855453088908709142217384595030459443781413074748182531343}{9443891867056846028644181241954322749058379263491382451929124171943044594} a^{12} + \frac{4478802059367738073459755513758397787609180502816740355430993394294863127}{9443891867056846028644181241954322749058379263491382451929124171943044594} a^{11} + \frac{1885427475493253939957670535139292283412763426714401239755388495848673548}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{10} + \frac{583710443955285006856316944961835392432389061953082309187974042831147426}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{9} + \frac{4207866210481567195087571336356676430800891778603389877352970639458740859}{9443891867056846028644181241954322749058379263491382451929124171943044594} a^{8} - \frac{859499251114517895157870434558964728796460302236628103616017996529710728}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{7} - \frac{982348877918194716590267295338649712459347261922957263595092577139034354}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{6} + \frac{255652763513201410069393440949450048872509372285143609399615085257476875}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{5} + \frac{478370426210765931025577959409118235581795054395114775204560923576884570}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{4} + \frac{1490049607766719988118298934165602511808078568676785035937447611922049117}{9443891867056846028644181241954322749058379263491382451929124171943044594} a^{3} + \frac{1877527682765617759139524771285029937731914241043022453629157774734315007}{4721945933528423014322090620977161374529189631745691225964562085971522297} a^{2} - \frac{2329913098002452110461378599580056164607680836573147610178615085821166362}{4721945933528423014322090620977161374529189631745691225964562085971522297} a - \frac{2808945698998480703980540385227042737074995433603191947013874486362499777}{9443891867056846028644181241954322749058379263491382451929124171943044594}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17893157.5975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 45 conjugacy class representatives for t16n1535 |
| Character table for t16n1535 is not computed |
Intermediate fields
| 4.0.257.1, 8.0.4227136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.24.283 | $x^{12} + 4 x^{11} - 8 x^{10} - 8 x^{9} + 16 x^{8} + 4 x^{6} + 8 x^{5} - 12 x^{4} + 16 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T60 | $[2, 2, 3, 3]^{6}$ | |
| 257 | Data not computed | ||||||
| 653 | Data not computed | ||||||