Normalized defining polynomial
\( x^{16} - 3 x^{15} - x^{14} + 82 x^{13} - 1159 x^{12} + 1969 x^{11} - 2915 x^{10} - 22812 x^{9} + 649004 x^{8} - 338442 x^{7} + 12864832 x^{6} + 23813486 x^{5} + 150009831 x^{4} + 374059157 x^{3} + 1998258043 x^{2} - 2105620954 x + 16042861628 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13307764731675384304522756096=2^{24}\cdot 257^{4}\cdot 653^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257, 653$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{15} + \frac{181902868140717945340073147285735796596503796635421734421853018978099831429}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{14} - \frac{194553473699894591152308915872812059008363910599141327601668897573743354609}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{13} + \frac{133396040149461458765684792824513000010930740364223396867923459836217816523}{367102453323025353514357465991794803293572236515335235163906078838928178163} a^{12} - \frac{270475307726143955120012811738381533679120449227973979463545953760108018643}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{11} + \frac{153833585084448140281988531308676121389216777496816826380854720943483526923}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{10} - \frac{327929190105426513441486829726024729618706537675990108548480237738606498361}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{9} + \frac{2803748840069964176254546354650270654056008246544366809312419546106882887}{21594261960177961971432792117164400193739543324431484421406239931701657539} a^{8} + \frac{56488371204796231798349662808374565181330105454778717498963908375667821454}{367102453323025353514357465991794803293572236515335235163906078838928178163} a^{7} + \frac{149591370536275427111430193248427380637989269776128200476723938129069496402}{367102453323025353514357465991794803293572236515335235163906078838928178163} a^{6} + \frac{76137712912701491016588090961216656269940824305301328608660104658606041826}{367102453323025353514357465991794803293572236515335235163906078838928178163} a^{5} - \frac{36159852128092767662678402633712519793549597015210109647153846974030009434}{367102453323025353514357465991794803293572236515335235163906078838928178163} a^{4} - \frac{152238176053215894853869463809643289226513275275660827441860461093843046399}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{3} + \frac{103098693570794934163058219392771167948521756297470073573039143900027982091}{734204906646050707028714931983589606587144473030670470327812157677856356326} a^{2} - \frac{170141035627762290696962049871070277350036550197336505251438061793420575429}{734204906646050707028714931983589606587144473030670470327812157677856356326} a - \frac{140856038223118859554200753281073703110666748333379717541098359351148794001}{367102453323025353514357465991794803293572236515335235163906078838928178163}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18558614.6078 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 45 conjugacy class representatives for t16n1535 |
| Character table for t16n1535 is not computed |
Intermediate fields
| 4.0.257.1, 8.0.4227136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.24.283 | $x^{12} + 4 x^{11} - 8 x^{10} - 8 x^{9} + 16 x^{8} + 4 x^{6} + 8 x^{5} - 12 x^{4} + 16 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T60 | $[2, 2, 3, 3]^{6}$ | |
| 257 | Data not computed | ||||||
| 653 | Data not computed | ||||||