Normalized defining polynomial
\( x^{16} - x^{15} - 75 x^{14} + 170 x^{13} + 3085 x^{12} - 2833 x^{11} - 61257 x^{10} - 80835 x^{9} + 745310 x^{8} + 2393835 x^{7} - 4007092 x^{6} - 28769888 x^{5} - 24060035 x^{4} + 130373870 x^{3} + 402284320 x^{2} + 459900849 x + 195517031 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1327939380231806599761962890625=5^{15}\cdot 61^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{61} a^{14} - \frac{12}{61} a^{13} - \frac{19}{61} a^{12} + \frac{10}{61} a^{11} + \frac{27}{61} a^{10} + \frac{14}{61} a^{9} - \frac{23}{61} a^{8} - \frac{28}{61} a^{7} - \frac{6}{61} a^{6} + \frac{10}{61} a^{5} - \frac{22}{61} a^{4} - \frac{24}{61} a^{2} - \frac{7}{61} a + \frac{5}{61}$, $\frac{1}{12541753342496974724653852687088501784009143754569966748809} a^{15} + \frac{6527037852266213259967667386227873713021859435115063773}{1140159394772452247695804789735318344000831250415451522619} a^{14} + \frac{2279517589523133336371322087745165511646700021232237070915}{12541753342496974724653852687088501784009143754569966748809} a^{13} + \frac{2822143086021121558997343054223519650746583098968553985960}{12541753342496974724653852687088501784009143754569966748809} a^{12} - \frac{5776131695792557133786082554777739332389377301285139823197}{12541753342496974724653852687088501784009143754569966748809} a^{11} - \frac{5343964164205137673755258855638144011970620038860511305209}{12541753342496974724653852687088501784009143754569966748809} a^{10} + \frac{5972950561019342195860036871633230259777615468930716400816}{12541753342496974724653852687088501784009143754569966748809} a^{9} - \frac{5704923996910739963485678457793475869301365412291741417738}{12541753342496974724653852687088501784009143754569966748809} a^{8} + \frac{5787718501964385807784715213620947772013405582664684361767}{12541753342496974724653852687088501784009143754569966748809} a^{7} - \frac{829881708487927069235203862647252210089547720574259836553}{12541753342496974724653852687088501784009143754569966748809} a^{6} - \frac{4812859159205068993936768566757054282869951071086749101317}{12541753342496974724653852687088501784009143754569966748809} a^{5} + \frac{5629851108480627016179496668159627788858126055888396235133}{12541753342496974724653852687088501784009143754569966748809} a^{4} - \frac{3139694122915281997190662626742814613109273373036283121716}{12541753342496974724653852687088501784009143754569966748809} a^{3} + \frac{5340059880492497851893138509224856864721361247325660225631}{12541753342496974724653852687088501784009143754569966748809} a^{2} + \frac{5135673220536763009098982463290124797500066037498141307740}{12541753342496974724653852687088501784009143754569966748809} a + \frac{90190899207445308166357200478430662847590996258833073101}{404572688467644345956575893131887154322875604986127959639}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2805456434864313088555702133143942817395326859607}{609385031946794360072584067202201145911721673124239189} a^{15} + \frac{8008958134090900096292018142875268295611826424865}{609385031946794360072584067202201145911721673124239189} a^{14} + \frac{195481385703214171279127657272530266331438045309631}{609385031946794360072584067202201145911721673124239189} a^{13} - \frac{839164133436590690528663110641049973879458176234099}{609385031946794360072584067202201145911721673124239189} a^{12} - \frac{7093938739573112741642497423011914217236556341822847}{609385031946794360072584067202201145911721673124239189} a^{11} + \frac{21075390860589243648382664013074278067918858261277961}{609385031946794360072584067202201145911721673124239189} a^{10} + \frac{132636484240980655688469114753469232039174944250253426}{609385031946794360072584067202201145911721673124239189} a^{9} - \frac{18435558848648835339515176934334832251899253194899921}{609385031946794360072584067202201145911721673124239189} a^{8} - \frac{2054914819850335951060836730390963667725582139176838444}{609385031946794360072584067202201145911721673124239189} a^{7} - \frac{2909185658527727434361022473853006574558393899882784892}{609385031946794360072584067202201145911721673124239189} a^{6} + \frac{16595313065066066613201482614158425397911588004896081265}{609385031946794360072584067202201145911721673124239189} a^{5} + \frac{49948909775071587552444814588072208324516910928960950802}{609385031946794360072584067202201145911721673124239189} a^{4} - \frac{24738920301950089687680089989240533975461967059357486722}{609385031946794360072584067202201145911721673124239189} a^{3} - \frac{319464447447749167183393568641957889628327549456550552554}{609385031946794360072584067202201145911721673124239189} a^{2} - \frac{537743415677093893430392815552437882207522502326842351873}{609385031946794360072584067202201145911721673124239189} a - \frac{9590531594224303270176913343454423091452306001389289205}{19657581675703043873309163458135520835861989455620619} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31039360.1909 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||