Normalized defining polynomial
\( x^{16} - x^{15} - 90 x^{14} + 320 x^{13} + 3025 x^{12} - 17923 x^{11} - 25202 x^{10} + 326245 x^{9} - 238150 x^{8} - 2059220 x^{7} + 2136023 x^{6} + 6262112 x^{5} + 12850245 x^{4} - 94819515 x^{3} + 132820860 x^{2} - 56633126 x + 8746001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1327939380231806599761962890625=5^{15}\cdot 61^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{18461256676124093471089794456067244888104813048669339790191} a^{15} - \frac{2579020867341562145532339959662657622425578989892874310306}{18461256676124093471089794456067244888104813048669339790191} a^{14} + \frac{136798555930648870320160688364325418600506111079533722764}{18461256676124093471089794456067244888104813048669339790191} a^{13} + \frac{4703947724626245428396437305914625952070238434977347232818}{18461256676124093471089794456067244888104813048669339790191} a^{12} - \frac{452310109256544114277549966878201575899951116740560266657}{1678296061465826679189981314187931353464073913515394526381} a^{11} - \frac{187728580113906840822939863981596147446549452481406875025}{18461256676124093471089794456067244888104813048669339790191} a^{10} + \frac{6758701942528080546553194723896439704953705656782076405363}{18461256676124093471089794456067244888104813048669339790191} a^{9} + \frac{1975382224110629668951454931314369182143354498391787076644}{18461256676124093471089794456067244888104813048669339790191} a^{8} - \frac{342464243213583314658999751881656156755038251888765810976}{1678296061465826679189981314187931353464073913515394526381} a^{7} - \frac{2454795161994536894233457993108436536363738194912510047864}{18461256676124093471089794456067244888104813048669339790191} a^{6} + \frac{5212632845845788824372459493415768798534563562171789250203}{18461256676124093471089794456067244888104813048669339790191} a^{5} - \frac{2413303762201937388395086884655954345962394542894689691733}{18461256676124093471089794456067244888104813048669339790191} a^{4} - \frac{3531804849466903451466174692006506657833804574818159649902}{18461256676124093471089794456067244888104813048669339790191} a^{3} - \frac{3253169902941419687898894718662677651573419305139509883897}{18461256676124093471089794456067244888104813048669339790191} a^{2} + \frac{146969605305185042107083263194776014686822337659802757044}{18461256676124093471089794456067244888104813048669339790191} a - \frac{191582623761627260465791696514158003896257715332362259568}{1678296061465826679189981314187931353464073913515394526381}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6832038750229535728889107726398075870782381087}{66755342327903690354002677466605598562669500557471641} a^{15} - \frac{1970003167397350047578009020110735875042123034}{66755342327903690354002677466605598562669500557471641} a^{14} + \frac{575915173837395021036646121964310954977411825117}{66755342327903690354002677466605598562669500557471641} a^{13} - \frac{1569775698239469354784494326156656942626504098029}{66755342327903690354002677466605598562669500557471641} a^{12} - \frac{19844380513317041225019892945914057843352388181754}{66755342327903690354002677466605598562669500557471641} a^{11} + \frac{98345197337398225572280835891038305891379905476237}{66755342327903690354002677466605598562669500557471641} a^{10} + \frac{185803212801451699164612700004633677239561727223466}{66755342327903690354002677466605598562669500557471641} a^{9} - \frac{1847621191896956762142201229317894939940724929634889}{66755342327903690354002677466605598562669500557471641} a^{8} + \frac{1166178714443679852880618990480716634216676386339419}{66755342327903690354002677466605598562669500557471641} a^{7} + \frac{11895979393927663515889357929026824448535858868633613}{66755342327903690354002677466605598562669500557471641} a^{6} - \frac{13240772424709259924424184502852654839106325830643071}{66755342327903690354002677466605598562669500557471641} a^{5} - \frac{38140269603217091425642147088808868339535853192005093}{66755342327903690354002677466605598562669500557471641} a^{4} - \frac{69656114019024335749835230581905810717717194616211769}{66755342327903690354002677466605598562669500557471641} a^{3} + \frac{584387613085658044569604470176558660090567541380255634}{66755342327903690354002677466605598562669500557471641} a^{2} - \frac{748029743989332265220028706038701655284377782275278620}{66755342327903690354002677466605598562669500557471641} a + \frac{161748363996543825967211991620788476927793687572004214}{66755342327903690354002677466605598562669500557471641} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57781591.4741 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||