Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} - 2 x^{13} + 8 x^{12} - 24 x^{11} + 50 x^{10} - 54 x^{9} + 19 x^{8} + 16 x^{7} - 24 x^{6} + 6 x^{5} + 9 x^{4} - 12 x^{3} + 7 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(132120176259825664=2^{16}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{149} a^{14} - \frac{14}{149} a^{13} - \frac{48}{149} a^{12} - \frac{71}{149} a^{11} - \frac{53}{149} a^{10} - \frac{9}{149} a^{9} + \frac{47}{149} a^{8} + \frac{21}{149} a^{7} + \frac{6}{149} a^{6} - \frac{57}{149} a^{5} - \frac{64}{149} a^{4} + \frac{53}{149} a^{3} + \frac{43}{149} a^{2} + \frac{30}{149} a + \frac{21}{149}$, $\frac{1}{1239829} a^{15} + \frac{756}{1239829} a^{14} + \frac{15545}{1239829} a^{13} - \frac{249058}{1239829} a^{12} + \frac{391979}{1239829} a^{11} - \frac{530433}{1239829} a^{10} - \frac{571593}{1239829} a^{9} - \frac{508980}{1239829} a^{8} - \frac{386422}{1239829} a^{7} + \frac{382427}{1239829} a^{6} + \frac{134101}{1239829} a^{5} - \frac{475069}{1239829} a^{4} + \frac{413353}{1239829} a^{3} - \frac{147150}{1239829} a^{2} - \frac{371133}{1239829} a - \frac{485066}{1239829}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18899}{23393} a^{15} - \frac{30913}{23393} a^{14} + \frac{67628}{23393} a^{13} - \frac{13823}{23393} a^{12} + \frac{1036}{157} a^{11} - \frac{387271}{23393} a^{10} + \frac{837522}{23393} a^{9} - \frac{738958}{23393} a^{8} + \frac{168789}{23393} a^{7} + \frac{372028}{23393} a^{6} - \frac{350951}{23393} a^{5} + \frac{34993}{23393} a^{4} + \frac{132112}{23393} a^{3} - \frac{1248}{157} a^{2} + \frac{76716}{23393} a - \frac{32962}{23393} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 127.734112859 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \), 4.2.1156.1 x2, 4.0.272.1 x2, \(\Q(i, \sqrt{17})\), 8.0.1257728.1, 8.0.363483392.1, 8.0.21381376.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |