Normalized defining polynomial
\( x^{16} - 6 x^{15} + 48 x^{14} - 194 x^{13} + 1027 x^{12} - 3286 x^{11} + 13568 x^{10} - 35071 x^{9} + 121104 x^{8} - 251532 x^{7} + 749631 x^{6} - 1200952 x^{5} + 3154322 x^{4} - 3529051 x^{3} + 8317312 x^{2} - 4933595 x + 10693577 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13185833497340017023096726049=17^{14}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(391=17\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{391}(1,·)$, $\chi_{391}(390,·)$, $\chi_{391}(321,·)$, $\chi_{391}(137,·)$, $\chi_{391}(206,·)$, $\chi_{391}(208,·)$, $\chi_{391}(344,·)$, $\chi_{391}(93,·)$, $\chi_{391}(229,·)$, $\chi_{391}(162,·)$, $\chi_{391}(70,·)$, $\chi_{391}(298,·)$, $\chi_{391}(47,·)$, $\chi_{391}(183,·)$, $\chi_{391}(185,·)$, $\chi_{391}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{1420066336313268079323697673207535485638} a^{15} - \frac{114508356691323773943734489100514292461}{1420066336313268079323697673207535485638} a^{14} + \frac{20523632831455624706662478881202812220}{710033168156634039661848836603767742819} a^{13} + \frac{38035165719175662361289484016968843915}{710033168156634039661848836603767742819} a^{12} + \frac{330904446064102077864297969967425768213}{1420066336313268079323697673207535485638} a^{11} + \frac{277127639976811437785439716171371083472}{710033168156634039661848836603767742819} a^{10} - \frac{136429160006479670981291122941659161291}{710033168156634039661848836603767742819} a^{9} - \frac{657265325910297897800127996150551025787}{1420066336313268079323697673207535485638} a^{8} - \frac{122906967058605139483885621840606311809}{710033168156634039661848836603767742819} a^{7} + \frac{314377857511426365372102590035057842995}{710033168156634039661848836603767742819} a^{6} + \frac{298190279239011529305752345971495669389}{1420066336313268079323697673207535485638} a^{5} + \frac{73863679348527786631330619892595726238}{710033168156634039661848836603767742819} a^{4} - \frac{289542179745691055983663972767660857959}{710033168156634039661848836603767742819} a^{3} + \frac{394162451673052402545626156846961423291}{1420066336313268079323697673207535485638} a^{2} - \frac{341948660049627717557572459287834681100}{710033168156634039661848836603767742819} a + \frac{648001352876436462739859740953679118655}{1420066336313268079323697673207535485638}$
Class group and class number
$C_{7}\times C_{7}\times C_{105}$, which has order $5145$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-391}) \), \(\Q(\sqrt{17}, \sqrt{-23})\), 4.4.4913.1, 4.0.2598977.1, 8.0.6754681446529.1, \(\Q(\zeta_{17})^+\), 8.0.114829584590993.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 23 | Data not computed | ||||||