Properties

Label 16.0.13184359909...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 5^{8}\cdot 17^{4}\cdot 97^{2}$
Root discriminant $32.17$
Ramified primes $2, 5, 17, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_2^4.C_2$ (as 16T595)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2399, -7600, 15444, -23124, 25740, -20632, 14078, -5824, 1797, 464, -506, 336, -62, 0, 14, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 14*x^14 - 62*x^12 + 336*x^11 - 506*x^10 + 464*x^9 + 1797*x^8 - 5824*x^7 + 14078*x^6 - 20632*x^5 + 25740*x^4 - 23124*x^3 + 15444*x^2 - 7600*x + 2399)
 
gp: K = bnfinit(x^16 - 4*x^15 + 14*x^14 - 62*x^12 + 336*x^11 - 506*x^10 + 464*x^9 + 1797*x^8 - 5824*x^7 + 14078*x^6 - 20632*x^5 + 25740*x^4 - 23124*x^3 + 15444*x^2 - 7600*x + 2399, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 14 x^{14} - 62 x^{12} + 336 x^{11} - 506 x^{10} + 464 x^{9} + 1797 x^{8} - 5824 x^{7} + 14078 x^{6} - 20632 x^{5} + 25740 x^{4} - 23124 x^{3} + 15444 x^{2} - 7600 x + 2399 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1318435990955622400000000=2^{32}\cdot 5^{8}\cdot 17^{4}\cdot 97^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{188} a^{13} - \frac{1}{47} a^{12} + \frac{13}{188} a^{11} - \frac{23}{94} a^{10} - \frac{4}{47} a^{9} + \frac{7}{94} a^{8} + \frac{71}{188} a^{7} - \frac{33}{94} a^{6} + \frac{43}{94} a^{5} - \frac{1}{94} a^{4} + \frac{43}{188} a^{3} + \frac{37}{94} a^{2} - \frac{53}{188} a - \frac{31}{94}$, $\frac{1}{564} a^{14} + \frac{1}{564} a^{13} - \frac{7}{564} a^{12} + \frac{113}{564} a^{11} + \frac{65}{282} a^{10} + \frac{7}{141} a^{9} - \frac{1}{12} a^{8} - \frac{181}{564} a^{7} - \frac{61}{141} a^{6} + \frac{73}{282} a^{5} + \frac{221}{564} a^{4} - \frac{181}{564} a^{3} + \frac{43}{188} a^{2} + \frac{143}{564} a - \frac{61}{282}$, $\frac{1}{21395812224755075484} a^{15} - \frac{17762576134111793}{21395812224755075484} a^{14} + \frac{28331887746356881}{10697906112377537742} a^{13} + \frac{239114244218838871}{10697906112377537742} a^{12} - \frac{5086507189795580105}{21395812224755075484} a^{11} + \frac{5265118397242390153}{21395812224755075484} a^{10} + \frac{4143113520282875743}{21395812224755075484} a^{9} + \frac{3521744264675918729}{21395812224755075484} a^{8} + \frac{4410350019722869163}{21395812224755075484} a^{7} - \frac{2470211373445725595}{21395812224755075484} a^{6} - \frac{1491070150504920355}{21395812224755075484} a^{5} - \frac{3132533856457421017}{21395812224755075484} a^{4} + \frac{107510569661800463}{1782984352062922957} a^{3} - \frac{2151006721191762232}{5348953056188768871} a^{2} + \frac{6903806482341416623}{21395812224755075484} a - \frac{1721650961145140593}{7131937408251691828}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 328002.608298 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_2^4.C_2$ (as 16T595):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $C_2^3.C_2^4.C_2$
Character table for $C_2^3.C_2^4.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.0.27200.2, 4.0.1088.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.739840000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.13$x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
2.8.16.13$x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
5Data not computed
$17$17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$97$97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.2.2$x^{4} - 97 x^{2} + 47045$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$