Normalized defining polynomial
\( x^{16} + 200 x^{14} - 40 x^{13} + 20064 x^{12} - 1200 x^{11} + 1289160 x^{10} + 230360 x^{9} + 56878606 x^{8} + 23128160 x^{7} + 1746492120 x^{6} + 988227240 x^{5} + 36125621744 x^{4} + 21278260880 x^{3} + 453261043160 x^{2} + 187061526120 x + 2592668017521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13174026235637722110754816000000000000=2^{48}\cdot 5^{12}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4880=2^{4}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(2563,·)$, $\chi_{4880}(2439,·)$, $\chi_{4880}(2441,·)$, $\chi_{4880}(2317,·)$, $\chi_{4880}(4879,·)$, $\chi_{4880}(4757,·)$, $\chi_{4880}(3293,·)$, $\chi_{4880}(1951,·)$, $\chi_{4880}(4027,·)$, $\chi_{4880}(4391,·)$, $\chi_{4880}(489,·)$, $\chi_{4880}(2929,·)$, $\chi_{4880}(1587,·)$, $\chi_{4880}(123,·)$, $\chi_{4880}(853,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} + \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{12} a^{3} + \frac{1}{12} a^{2} - \frac{11}{24} a - \frac{3}{8}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{7}{24} a^{2} - \frac{1}{6} a + \frac{3}{8}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} + \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{11}{24} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{3}{8}$, $\frac{1}{936} a^{12} - \frac{1}{936} a^{11} + \frac{11}{936} a^{10} + \frac{1}{312} a^{9} + \frac{1}{36} a^{8} - \frac{37}{234} a^{7} - \frac{7}{234} a^{6} - \frac{20}{117} a^{5} - \frac{101}{936} a^{4} - \frac{15}{104} a^{3} + \frac{103}{312} a^{2} + \frac{17}{936} a + \frac{49}{156}$, $\frac{1}{1872} a^{13} - \frac{1}{1872} a^{12} - \frac{7}{468} a^{11} - \frac{1}{52} a^{10} - \frac{1}{144} a^{9} - \frac{31}{1872} a^{8} + \frac{55}{234} a^{7} - \frac{10}{117} a^{6} - \frac{101}{1872} a^{5} + \frac{37}{208} a^{4} + \frac{29}{156} a^{3} + \frac{131}{468} a^{2} - \frac{15}{208} a - \frac{1}{16}$, $\frac{1}{418512906864} a^{14} - \frac{49701059}{209256453432} a^{13} + \frac{41367529}{139504302288} a^{12} + \frac{551338639}{52314113358} a^{11} + \frac{7935360697}{418512906864} a^{10} + \frac{1882330793}{104628226716} a^{9} - \frac{8965126595}{418512906864} a^{8} + \frac{16122477883}{104628226716} a^{7} + \frac{19234261949}{139504302288} a^{6} - \frac{30662391875}{209256453432} a^{5} - \frac{48593208779}{418512906864} a^{4} - \frac{45592327411}{104628226716} a^{3} + \frac{15297431575}{46501434096} a^{2} - \frac{21637773983}{52314113358} a + \frac{939966751}{1964849328}$, $\frac{1}{116944639444271868980053560869768707973116656} a^{15} + \frac{13502499385306058298728758519337}{58472319722135934490026780434884353986558328} a^{14} + \frac{23936841708519675748641615402975618290635}{116944639444271868980053560869768707973116656} a^{13} + \frac{6499003647953036751752814729915287735203}{58472319722135934490026780434884353986558328} a^{12} + \frac{629990971390277669202606420169367001924353}{116944639444271868980053560869768707973116656} a^{11} + \frac{46271446573575895096110748984465514684359}{29236159861067967245013390217442176993279164} a^{10} + \frac{1601355231677738635580630764659358728204329}{116944639444271868980053560869768707973116656} a^{9} - \frac{47220084908077466749784482586187952134687}{2165641471190219795926917793884605703205864} a^{8} + \frac{7367054006363555093517916220566749753015623}{116944639444271868980053560869768707973116656} a^{7} + \frac{5381704692662005178949081127040349883580533}{58472319722135934490026780434884353986558328} a^{6} - \frac{13702386781680032052934848951371038554152059}{116944639444271868980053560869768707973116656} a^{5} + \frac{8407004562092190845809044267545841716914883}{58472319722135934490026780434884353986558328} a^{4} - \frac{14196917010889839715580930259160321059170153}{116944639444271868980053560869768707973116656} a^{3} - \frac{2772501703151962087651230141884402831445641}{14618079930533983622506695108721088496639582} a^{2} + \frac{20335019993771459503183124553730531073582815}{116944639444271868980053560869768707973116656} a + \frac{123764984740883909522770581337509820071127}{274517932967774340328764227393823258152856}$
Class group and class number
$C_{2}\times C_{390}\times C_{31200}$, which has order $24336000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85299.42553126559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |