Properties

Label 16.0.13066428858...0625.5
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 5^{12}\cdot 13^{8}$
Root discriminant $20.88$
Ramified primes $3, 5, 13$
Class number $4$
Class group $[4]$
Galois group $D_{8}$ (as 16T13)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81, 0, 594, 0, 945, 0, 651, 0, 274, 0, 56, 0, 0, 0, -1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^14 + 56*x^10 + 274*x^8 + 651*x^6 + 945*x^4 + 594*x^2 + 81)
 
gp: K = bnfinit(x^16 - x^14 + 56*x^10 + 274*x^8 + 651*x^6 + 945*x^4 + 594*x^2 + 81, 1)
 

Normalized defining polynomial

\( x^{16} - x^{14} + 56 x^{10} + 274 x^{8} + 651 x^{6} + 945 x^{4} + 594 x^{2} + 81 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1306642885859619140625=3^{8}\cdot 5^{12}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{5} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{9} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{18} a^{10} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{10} - \frac{1}{18} a^{8} + \frac{1}{27} a^{6} - \frac{1}{2} a^{5} + \frac{13}{54} a^{4} + \frac{5}{18} a^{2} + \frac{1}{6}$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{11} - \frac{7}{54} a^{7} - \frac{1}{6} a^{6} - \frac{5}{54} a^{5} - \frac{1}{6} a^{4} + \frac{7}{18} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{1098846} a^{14} - \frac{25}{32319} a^{12} - \frac{107}{10773} a^{10} - \frac{74149}{1098846} a^{8} - \frac{1}{6} a^{7} - \frac{47729}{1098846} a^{6} - \frac{1}{6} a^{5} + \frac{4288}{20349} a^{4} + \frac{1}{3} a^{3} + \frac{5368}{20349} a^{2} - \frac{18839}{40698}$, $\frac{1}{1098846} a^{15} - \frac{25}{32319} a^{13} - \frac{107}{10773} a^{11} - \frac{6551}{549423} a^{9} - \frac{47729}{1098846} a^{7} - \frac{1}{6} a^{6} - \frac{9278}{20349} a^{5} - \frac{1}{6} a^{4} - \frac{2073}{4522} a^{3} + \frac{1}{3} a^{2} + \frac{7538}{20349} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{344}{28917} a^{15} + \frac{65}{3402} a^{13} - \frac{10}{567} a^{11} - \frac{36845}{57834} a^{9} - \frac{167455}{57834} a^{7} - \frac{40669}{6426} a^{5} - \frac{8825}{1071} a^{3} - \frac{3575}{1071} a + \frac{1}{2} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 81230.9904901 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_8$ (as 16T13):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 7 conjugacy class representatives for $D_{8}$
Character table for $D_{8}$

Intermediate fields

\(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-3}, \sqrt{13})\), 4.0.2925.1 x2, 4.2.12675.1 x2, 8.0.1445900625.2, 8.0.2780578125.1 x4, 8.2.12049171875.1 x4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$5$5.8.6.4$x^{8} - 5 x^{4} + 50$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
5.8.6.4$x^{8} - 5 x^{4} + 50$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$