Normalized defining polynomial
\( x^{16} - x^{15} + 7 x^{14} + 25 x^{12} + 21 x^{11} + 66 x^{10} + 165 x^{9} + 109 x^{8} + 440 x^{7} + 519 x^{6} + 563 x^{5} + 725 x^{4} + 620 x^{3} + 708 x^{2} + 112 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1306642885859619140625=3^{8}\cdot 5^{12}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{5}$, $\frac{1}{48} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{7} + \frac{7}{48} a^{6} + \frac{1}{24} a^{5} + \frac{1}{24} a^{4} - \frac{3}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{12} a + \frac{1}{3}$, $\frac{1}{48} a^{13} - \frac{1}{16} a^{10} + \frac{1}{24} a^{8} - \frac{5}{48} a^{7} - \frac{1}{6} a^{6} - \frac{5}{48} a^{4} + \frac{7}{24} a^{2} - \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{384} a^{14} - \frac{1}{128} a^{13} - \frac{3}{128} a^{11} - \frac{7}{128} a^{10} + \frac{5}{96} a^{9} - \frac{5}{384} a^{8} + \frac{91}{384} a^{7} - \frac{1}{16} a^{6} + \frac{25}{384} a^{5} - \frac{17}{128} a^{4} - \frac{19}{96} a^{3} - \frac{19}{96} a^{2} - \frac{1}{24} a + \frac{3}{8}$, $\frac{1}{22448679936} a^{15} + \frac{1296603}{1870723328} a^{14} + \frac{2267291}{22448679936} a^{13} + \frac{50953069}{7482893312} a^{12} - \frac{186539}{1870723328} a^{11} + \frac{740472641}{22448679936} a^{10} + \frac{1096924615}{22448679936} a^{9} - \frac{106794239}{2806084992} a^{8} - \frac{2075672107}{22448679936} a^{7} + \frac{796670859}{7482893312} a^{6} + \frac{404793273}{1870723328} a^{5} + \frac{1708471375}{22448679936} a^{4} - \frac{51544679}{701521248} a^{3} + \frac{641517297}{1870723328} a^{2} + \frac{80380507}{350760624} a - \frac{262914893}{1403042496}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{76918641}{7482893312} a^{15} + \frac{73032475}{5612169984} a^{14} - \frac{572481955}{7482893312} a^{13} + \frac{489355835}{22448679936} a^{12} - \frac{1547036155}{5612169984} a^{11} - \frac{3017434027}{22448679936} a^{10} - \frac{15758671205}{22448679936} a^{9} - \frac{705052565}{467680832} a^{8} - \frac{20348427815}{22448679936} a^{7} - \frac{99509029555}{22448679936} a^{6} - \frac{25264221763}{5612169984} a^{5} - \frac{121878098885}{22448679936} a^{4} - \frac{2345356615}{350760624} a^{3} - \frac{32680917265}{5612169984} a^{2} - \frac{829654085}{116920208} a - \frac{175145521}{1403042496} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33349.777132 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |