Normalized defining polynomial
\( x^{16} - x^{15} - 3 x^{14} + 10 x^{13} - 10 x^{12} + 31 x^{11} + 66 x^{10} - 310 x^{9} + 229 x^{8} + 930 x^{7} + 594 x^{6} - 837 x^{5} - 810 x^{4} - 2430 x^{3} - 2187 x^{2} + 2187 x + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1306642885859619140625=3^{8}\cdot 5^{12}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(64,·)$, $\chi_{195}(1,·)$, $\chi_{195}(194,·)$, $\chi_{195}(131,·)$, $\chi_{195}(77,·)$, $\chi_{195}(142,·)$, $\chi_{195}(79,·)$, $\chi_{195}(14,·)$, $\chi_{195}(92,·)$, $\chi_{195}(157,·)$, $\chi_{195}(38,·)$, $\chi_{195}(103,·)$, $\chi_{195}(116,·)$, $\chi_{195}(181,·)$, $\chi_{195}(118,·)$, $\chi_{195}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{171} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{40}{171} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a - \frac{8}{19}$, $\frac{1}{513} a^{11} - \frac{1}{513} a^{10} - \frac{1}{9} a^{9} - \frac{8}{27} a^{8} + \frac{8}{27} a^{7} - \frac{131}{513} a^{6} + \frac{31}{171} a^{5} + \frac{5}{27} a^{4} - \frac{5}{27} a^{3} + \frac{4}{9} a^{2} - \frac{9}{19} a + \frac{9}{19}$, $\frac{1}{6156} a^{12} - \frac{1}{1539} a^{11} + \frac{1}{324} a^{9} + \frac{8}{81} a^{8} + \frac{238}{1539} a^{7} - \frac{1}{228} a^{6} - \frac{28}{81} a^{5} - \frac{5}{81} a^{4} + \frac{1}{4} a^{3} + \frac{74}{171} a^{2} - \frac{10}{57} a - \frac{1}{4}$, $\frac{1}{18301788} a^{13} - \frac{223}{4575447} a^{12} - \frac{1165}{1525149} a^{11} + \frac{17551}{18301788} a^{10} - \frac{29104}{240813} a^{9} + \frac{1734976}{4575447} a^{8} - \frac{2087333}{6100596} a^{7} - \frac{508438}{4575447} a^{6} - \frac{1349639}{4575447} a^{5} + \frac{124579}{321084} a^{4} + \frac{113029}{508383} a^{3} + \frac{5381}{56487} a^{2} - \frac{75347}{225948} a + \frac{2400}{18829}$, $\frac{1}{54905364} a^{14} - \frac{1}{54905364} a^{13} + \frac{959}{18301788} a^{12} + \frac{47971}{54905364} a^{11} - \frac{59491}{54905364} a^{10} + \frac{3745111}{54905364} a^{9} - \frac{1129709}{18301788} a^{8} + \frac{4566191}{54905364} a^{7} - \frac{8243519}{54905364} a^{6} + \frac{336913}{18301788} a^{5} - \frac{527239}{6100596} a^{4} - \frac{126157}{677844} a^{3} - \frac{221963}{677844} a^{2} - \frac{19689}{75316} a - \frac{15763}{75316}$, $\frac{1}{164716092} a^{15} - \frac{1}{164716092} a^{14} - \frac{1}{54905364} a^{13} - \frac{5255}{164716092} a^{12} - \frac{39619}{164716092} a^{11} + \frac{76495}{164716092} a^{10} + \frac{985333}{54905364} a^{9} - \frac{29341345}{164716092} a^{8} + \frac{3975709}{164716092} a^{7} - \frac{11706593}{54905364} a^{6} - \frac{37349}{6100596} a^{5} + \frac{1441805}{6100596} a^{4} - \frac{260639}{677844} a^{3} - \frac{212371}{677844} a^{2} + \frac{695}{75316} a - \frac{16797}{37658}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7}{677844} a^{15} - \frac{245}{3050298} a^{14} - \frac{7}{225948} a^{13} + \frac{35}{338922} a^{12} - \frac{35}{338922} a^{11} + \frac{217}{677844} a^{10} - \frac{11795}{3050298} a^{9} - \frac{1085}{338922} a^{8} + \frac{1603}{677844} a^{7} + \frac{1085}{112974} a^{6} + \frac{231}{37658} a^{5} - \frac{2066443}{6100596} a^{4} - \frac{315}{37658} a^{3} - \frac{945}{37658} a^{2} - \frac{1701}{75316} a + \frac{1701}{75316} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24866.4840857 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |