Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 22 x^{13} + 32 x^{12} - 85 x^{11} + 252 x^{10} - 513 x^{9} + 763 x^{8} - 1077 x^{7} + 1776 x^{6} - 2557 x^{5} + 3134 x^{4} - 3628 x^{3} + 3602 x^{2} - 2279 x + 619 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1298528369092716162129=3^{12}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{2} + \frac{3}{8} a$, $\frac{1}{48} a^{12} - \frac{1}{48} a^{11} + \frac{1}{48} a^{10} - \frac{5}{48} a^{9} - \frac{1}{24} a^{8} + \frac{5}{48} a^{7} + \frac{5}{48} a^{6} - \frac{13}{48} a^{5} + \frac{1}{3} a^{4} + \frac{7}{48} a^{3} - \frac{5}{48} a^{2} + \frac{5}{48} a + \frac{19}{48}$, $\frac{1}{48} a^{13} + \frac{1}{24} a^{10} + \frac{5}{48} a^{9} + \frac{1}{16} a^{8} - \frac{1}{6} a^{7} - \frac{1}{24} a^{6} + \frac{3}{16} a^{5} - \frac{19}{48} a^{4} - \frac{1}{12} a^{3} + \frac{1}{4} a^{2} - \frac{23}{48}$, $\frac{1}{576} a^{14} - \frac{1}{96} a^{13} + \frac{1}{576} a^{12} + \frac{19}{576} a^{11} - \frac{1}{96} a^{10} - \frac{1}{72} a^{9} - \frac{29}{288} a^{8} - \frac{29}{192} a^{7} - \frac{17}{72} a^{6} - \frac{1}{72} a^{5} - \frac{5}{12} a^{4} - \frac{77}{576} a^{3} + \frac{67}{576} a^{2} + \frac{1}{8} a + \frac{241}{576}$, $\frac{1}{5756463559872} a^{15} - \frac{12431779}{639607062208} a^{14} + \frac{19519504675}{5756463559872} a^{13} - \frac{8114764951}{2878231779936} a^{12} - \frac{30174119497}{639607062208} a^{11} + \frac{114462478361}{2878231779936} a^{10} + \frac{298805533639}{2878231779936} a^{9} - \frac{176174290579}{1918821186624} a^{8} - \frac{1260005585161}{5756463559872} a^{7} - \frac{63153903575}{1439115889968} a^{6} + \frac{12816591571}{39975441388} a^{5} - \frac{784648187201}{5756463559872} a^{4} + \frac{23448319657}{359778972492} a^{3} + \frac{195482000855}{1918821186624} a^{2} - \frac{2274442535387}{5756463559872} a - \frac{750629739095}{1918821186624}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{16322959}{1030885308} a^{15} - \frac{542536277}{8247082464} a^{14} + \frac{676412809}{4123541232} a^{13} - \frac{186620675}{916342496} a^{12} + \frac{2657143027}{8247082464} a^{11} - \frac{1099973333}{1030885308} a^{10} + \frac{12654466597}{4123541232} a^{9} - \frac{22401625001}{4123541232} a^{8} + \frac{59789050681}{8247082464} a^{7} - \frac{43795109245}{4123541232} a^{6} + \frac{77718315227}{4123541232} a^{5} - \frac{24691070087}{1030885308} a^{4} + \frac{77543880029}{2749027488} a^{3} - \frac{270759809849}{8247082464} a^{2} + \frac{117352865119}{4123541232} a - \frac{85089406715}{8247082464} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48883.6384753 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,Z/4)$ (as 16T186):
| A solvable group of order 96 |
| The 14 conjugacy class representatives for $\GL(2,Z/4)$ |
| Character table for $\GL(2,Z/4)$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.4.9909.1, 4.0.9909.1, 8.0.98188281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.6.5343738144414469803.1, 12.0.14560594398949509.3, 12.0.14560594398949509.2, 12.0.14560594398949509.4 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 367 | Data not computed | ||||||