Normalized defining polynomial
\( x^{16} - 6 x^{15} + 118 x^{13} - 454 x^{12} - 450 x^{11} + 9075 x^{10} - 36523 x^{9} + 80287 x^{8} - 79156 x^{7} - 58067 x^{6} + 350155 x^{5} - 455538 x^{4} + 197266 x^{3} + 619715 x^{2} - 823177 x + 636931 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(129672479863204507348386828961=41^{14}\cdot 43^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{612208} a^{14} - \frac{17785}{612208} a^{13} + \frac{2909}{306104} a^{12} - \frac{72051}{612208} a^{11} - \frac{37927}{612208} a^{10} - \frac{127859}{306104} a^{9} - \frac{35361}{153052} a^{8} - \frac{61225}{612208} a^{7} + \frac{125195}{306104} a^{6} - \frac{141781}{612208} a^{5} - \frac{109403}{306104} a^{4} + \frac{127275}{306104} a^{3} + \frac{9375}{306104} a^{2} - \frac{121259}{306104} a - \frac{256493}{612208}$, $\frac{1}{4077862309853507944817099155683171568} a^{15} + \frac{961910417171791432888095048299}{4077862309853507944817099155683171568} a^{14} + \frac{27824829185733792285070626973532117}{2038931154926753972408549577841585784} a^{13} + \frac{164159243636239987031760520022858027}{4077862309853507944817099155683171568} a^{12} + \frac{2811893815748873525304538183879913}{4077862309853507944817099155683171568} a^{11} + \frac{122859344392151226211320277343930375}{509732788731688493102137394460396446} a^{10} + \frac{60677332928961866626114660023452375}{1019465577463376986204274788920792892} a^{9} + \frac{1309659680971811615728052064024705055}{4077862309853507944817099155683171568} a^{8} + \frac{735864948638039775433582808901319735}{2038931154926753972408549577841585784} a^{7} - \frac{685407145608362378609133936427991221}{4077862309853507944817099155683171568} a^{6} - \frac{234975192072045664030317275696881913}{1019465577463376986204274788920792892} a^{5} + \frac{31086694029395890480962779168354135}{1019465577463376986204274788920792892} a^{4} - \frac{64793189565579107344116560237928881}{1019465577463376986204274788920792892} a^{3} - \frac{412050449908880767202721997882431647}{2038931154926753972408549577841585784} a^{2} - \frac{137003266586518745460504977634319387}{4077862309853507944817099155683171568} a + \frac{812733884929440545107046746278436249}{2038931154926753972408549577841585784}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53320614.8559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.2963603.1, 4.4.68921.1, 4.2.72283.1, 8.4.360100652405969.1, 8.0.194754273881.1, 8.4.8782942741609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |