Normalized defining polynomial
\( x^{16} - 3 x^{15} + 2 x^{14} + x^{13} + 11 x^{12} - 111 x^{11} + 255 x^{10} - 332 x^{9} + 866 x^{8} - 890 x^{7} - 391 x^{6} - 2768 x^{5} + 9867 x^{4} - 12492 x^{3} + 11003 x^{2} - 6345 x + 2209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12913449667746331350360169=17^{12}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{188} a^{12} - \frac{41}{188} a^{11} + \frac{17}{94} a^{10} - \frac{19}{94} a^{9} - \frac{7}{188} a^{8} - \frac{51}{188} a^{6} - \frac{5}{188} a^{5} + \frac{63}{188} a^{4} - \frac{19}{188} a^{3} - \frac{37}{188} a^{2} - \frac{7}{47} a + \frac{1}{4}$, $\frac{1}{188} a^{13} + \frac{45}{188} a^{11} + \frac{10}{47} a^{10} + \frac{33}{188} a^{9} - \frac{5}{188} a^{8} - \frac{51}{188} a^{7} + \frac{33}{94} a^{6} - \frac{12}{47} a^{5} + \frac{13}{94} a^{4} - \frac{16}{47} a^{3} + \frac{53}{188} a^{2} - \frac{67}{188} a + \frac{1}{4}$, $\frac{1}{188} a^{14} + \frac{5}{188} a^{11} + \frac{7}{188} a^{10} + \frac{13}{188} a^{9} - \frac{9}{94} a^{8} - \frac{7}{47} a^{7} - \frac{9}{188} a^{6} - \frac{31}{188} a^{5} + \frac{15}{188} a^{4} + \frac{31}{94} a^{3} - \frac{1}{2} a^{2} + \frac{85}{188} a + \frac{1}{4}$, $\frac{1}{203175372548375705204} a^{15} + \frac{304441568764351989}{203175372548375705204} a^{14} - \frac{50473960440226027}{101587686274187852602} a^{13} - \frac{55985475272200321}{50793843137093926301} a^{12} - \frac{22299618665054336857}{203175372548375705204} a^{11} - \frac{4548504720821676457}{50793843137093926301} a^{10} - \frac{1063418412914603295}{203175372548375705204} a^{9} + \frac{2416678666009298731}{203175372548375705204} a^{8} + \frac{51591313787675496195}{203175372548375705204} a^{7} + \frac{57413975629114574645}{203175372548375705204} a^{6} - \frac{37176046992501820625}{203175372548375705204} a^{5} + \frac{33978865462389660541}{101587686274187852602} a^{4} + \frac{70975180023990531813}{203175372548375705204} a^{3} - \frac{8185553380248368931}{50793843137093926301} a^{2} - \frac{34951980500347042485}{101587686274187852602} a - \frac{311617069201829045}{2161440133493358566}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 128061.369114 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.4.15317.1, 4.4.260389.1, 8.8.67802431321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $53$ | 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |