Normalized defining polynomial
\( x^{16} + 12 x^{14} + 218 x^{12} - 24 x^{11} + 2624 x^{10} + 1008 x^{9} + 24297 x^{8} + 5952 x^{7} + 166628 x^{6} + 9744 x^{5} + 766944 x^{4} - 149280 x^{3} + 2362076 x^{2} - 716904 x + 3186913 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12882531132048216201998893056=2^{48}\cdot 3^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(816=2^{4}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{816}(1,·)$, $\chi_{816}(67,·)$, $\chi_{816}(647,·)$, $\chi_{816}(713,·)$, $\chi_{816}(205,·)$, $\chi_{816}(271,·)$, $\chi_{816}(409,·)$, $\chi_{816}(475,·)$, $\chi_{816}(101,·)$, $\chi_{816}(35,·)$, $\chi_{816}(613,·)$, $\chi_{816}(679,·)$, $\chi_{816}(239,·)$, $\chi_{816}(305,·)$, $\chi_{816}(443,·)$, $\chi_{816}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{8809727} a^{14} - \frac{515571}{8809727} a^{13} - \frac{1780669}{8809727} a^{12} + \frac{465788}{8809727} a^{11} - \frac{3514110}{8809727} a^{10} - \frac{3257963}{8809727} a^{9} + \frac{2563009}{8809727} a^{8} - \frac{753121}{8809727} a^{7} - \frac{1588824}{8809727} a^{6} - \frac{2811046}{8809727} a^{5} - \frac{151793}{8809727} a^{4} + \frac{3557897}{8809727} a^{3} - \frac{2502606}{8809727} a^{2} - \frac{1706825}{8809727} a - \frac{1567764}{8809727}$, $\frac{1}{67518876307669733372578121135183} a^{15} - \frac{3434129934068939491240398}{67518876307669733372578121135183} a^{14} + \frac{4700476695450309538141530330667}{67518876307669733372578121135183} a^{13} - \frac{14646644893914640891443342252732}{67518876307669733372578121135183} a^{12} - \frac{6626599781609529143875054331893}{67518876307669733372578121135183} a^{11} + \frac{15916927620249474937256625692933}{67518876307669733372578121135183} a^{10} + \frac{913551920394729407941189598834}{67518876307669733372578121135183} a^{9} - \frac{21418294284942479602935075818791}{67518876307669733372578121135183} a^{8} + \frac{24232777039024572103334367924983}{67518876307669733372578121135183} a^{7} + \frac{30285028034294112087582267856302}{67518876307669733372578121135183} a^{6} + \frac{5006500760817491514684088595972}{67518876307669733372578121135183} a^{5} - \frac{22642758398830109654431212827272}{67518876307669733372578121135183} a^{4} + \frac{16260824010201055070144699818477}{67518876307669733372578121135183} a^{3} - \frac{12523311713412837536258711611168}{67518876307669733372578121135183} a^{2} + \frac{12121159593800185397370597989866}{67518876307669733372578121135183} a + \frac{33566763468792853631900056427201}{67518876307669733372578121135183}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{40}$, which has order $1280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |