Normalized defining polynomial
\( x^{16} - 4 x^{15} + 2 x^{14} + 2 x^{13} + 27 x^{12} - 65 x^{11} + 53 x^{10} - 76 x^{9} + 195 x^{8} - 289 x^{7} + 288 x^{6} - 225 x^{5} + 137 x^{4} - 62 x^{3} + 22 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12882379072509765625=5^{12}\cdot 29^{2}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1209286021} a^{15} - \frac{86305067}{1209286021} a^{14} - \frac{8560310}{29494781} a^{13} - \frac{445596403}{1209286021} a^{12} + \frac{145198900}{1209286021} a^{11} + \frac{317768759}{1209286021} a^{10} + \frac{258816251}{1209286021} a^{9} - \frac{248264413}{1209286021} a^{8} + \frac{228743208}{1209286021} a^{7} + \frac{2557912}{29494781} a^{6} + \frac{444173132}{1209286021} a^{5} - \frac{298033142}{1209286021} a^{4} + \frac{270377652}{1209286021} a^{3} - \frac{399004121}{1209286021} a^{2} - \frac{369659125}{1209286021} a + \frac{127038651}{1209286021}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2740353664}{1209286021} a^{15} + \frac{10045211574}{1209286021} a^{14} - \frac{47647995}{29494781} a^{13} - \frac{6664473063}{1209286021} a^{12} - \frac{76246472823}{1209286021} a^{11} + \frac{152612563348}{1209286021} a^{10} - \frac{89600085781}{1209286021} a^{9} + \frac{171621708975}{1209286021} a^{8} - \frac{471404556934}{1209286021} a^{7} + \frac{15144748011}{29494781} a^{6} - \frac{557632332323}{1209286021} a^{5} + \frac{398255996828}{1209286021} a^{4} - \frac{205752197840}{1209286021} a^{3} + \frac{73722787664}{1209286021} a^{2} - \frac{21349157511}{1209286021} a + \frac{3896984120}{1209286021} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2956.99382672 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T610):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.11125.1, 4.4.2225.1, 8.0.123765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.4.1 | $x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |