Properties

Label 16.0.12877254853...4656.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{36}\cdot 3^{8}\cdot 13^{4}$
Root discriminant $15.64$
Ramified primes $2, 3, 13$
Class number $1$
Class group Trivial
Galois group $C_2^2 \times D_4$ (as 16T25)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![169, 0, 632, 0, 686, 0, 180, 0, 35, 0, 12, 0, 26, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 26*x^12 + 12*x^10 + 35*x^8 + 180*x^6 + 686*x^4 + 632*x^2 + 169)
 
gp: K = bnfinit(x^16 - 4*x^14 + 26*x^12 + 12*x^10 + 35*x^8 + 180*x^6 + 686*x^4 + 632*x^2 + 169, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} + 26 x^{12} + 12 x^{10} + 35 x^{8} + 180 x^{6} + 686 x^{4} + 632 x^{2} + 169 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12877254853348294656=2^{36}\cdot 3^{8}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{8} a^{10} + \frac{3}{8} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{2} + \frac{1}{4}$, $\frac{1}{104} a^{11} - \frac{3}{104} a^{9} - \frac{3}{8} a^{7} - \frac{23}{104} a^{5} + \frac{25}{104} a^{3} - \frac{33}{104} a$, $\frac{1}{312} a^{12} + \frac{5}{156} a^{10} + \frac{73}{156} a^{6} - \frac{6}{13} a^{4} - \frac{5}{78} a^{2} - \frac{11}{24}$, $\frac{1}{312} a^{13} + \frac{1}{312} a^{11} - \frac{1}{26} a^{9} - \frac{49}{312} a^{7} + \frac{17}{52} a^{5} + \frac{67}{312} a^{3} + \frac{115}{312} a$, $\frac{1}{1764048} a^{14} - \frac{1}{624} a^{13} + \frac{101}{294008} a^{12} - \frac{1}{624} a^{11} + \frac{106775}{1764048} a^{10} + \frac{1}{52} a^{9} - \frac{9799}{1764048} a^{8} - \frac{263}{624} a^{7} + \frac{417319}{1764048} a^{6} - \frac{17}{104} a^{5} + \frac{855655}{1764048} a^{4} - \frac{67}{624} a^{3} + \frac{6883}{73502} a^{2} + \frac{197}{624} a - \frac{45283}{135696}$, $\frac{1}{1764048} a^{15} - \frac{2221}{1764048} a^{13} - \frac{1}{624} a^{12} + \frac{136}{110253} a^{11} + \frac{29}{624} a^{10} + \frac{108935}{1764048} a^{9} + \frac{277921}{882024} a^{7} + \frac{283}{624} a^{6} - \frac{399533}{1764048} a^{5} - \frac{41}{104} a^{4} - \frac{804469}{1764048} a^{3} + \frac{59}{624} a^{2} - \frac{210943}{882024} a - \frac{7}{48}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{331}{36751} a^{15} - \frac{39895}{882024} a^{13} + \frac{61247}{220506} a^{11} - \frac{23389}{147004} a^{9} + \frac{85927}{220506} a^{7} + \frac{201611}{147004} a^{5} + \frac{2090731}{441012} a^{3} + \frac{921431}{882024} a \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11347.4195205 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times D_4$ (as 16T25):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 \times D_4$
Character table for $C_2^2 \times D_4$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), 4.4.7488.1, 4.0.7488.1, 4.0.29952.1, 4.4.29952.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\zeta_{8})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(i, \sqrt{6})\), \(\Q(\zeta_{24})\), 8.0.56070144.2, 8.0.897122304.10, 8.0.3588489216.16, 8.0.3588489216.5, 8.8.3588489216.1, 8.0.3588489216.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$